Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
Bitte beachten Sie
Von Mittwoch, dem 12.11.2025 ab 23:00 Uhr bis Donnerstag, dem 13.11.2025 bis 07:00 Uhr finden Wartungsarbeiten bei unserem externen E-Book Dienstleister statt. Daher bitten wir Sie Ihre E-Book Bestellung außerhalb dieses Zeitraums durchzuführen. Wir bitten um Ihr Verständnis. Bei Problemen und Rückfragen kontaktieren Sie gerne unseren Schweitzer Fachinformationen E-Book Support.
"GreptimeDB Essentials" "GreptimeDB Essentials" provides a comprehensive guide to mastering time-series data management with GreptimeDB, a cutting-edge, high-performance time-series database. Beginning with foundational concepts, the book explores the unique characteristics and management challenges of time-series data, its applications across industries such as IoT, finance, and infrastructure monitoring, and how GreptimeDB stands apart from other platforms. Readers gain deep insight into modern time-series database architectures, ecosystem trends, and performance comparisons-all essential for anyone architecting or scaling large-scale data systems. The core of the book delves into GreptimeDB's own architecture, storage, ingestion pipelines, and distributed query processing. Detailed chapters address schema modeling, data compression, indexing strategies, and downsampling, equipping practitioners to maximize query efficiency and manage ever-evolving schemas. Operational topics-such as deployment (on-premises, cloud, edge), cluster scaling, monitoring, and cost optimization-are covered extensively, providing practical guidance for ensuring robustness, high availability, and disaster recovery in production environments. Catering to both engineers and technical leaders, "GreptimeDB Essentials" also explores security, privacy, compliance, and multi-tenant architectures vital to enterprise adoption. The book highlights integration capabilities with cloud-native tools, popular stream-processing systems, and observability platforms. Rounding out the journey, readers are invited into GreptimeDB's vibrant open-source community and roadmap, including case studies, opportunities to contribute, and insights into the future of time-series data management. Whether you are building analytical pipelines, developing data-driven applications, or modernizing legacy infrastructure, this book is an indispensable resource for realizing the full potential of GreptimeDB.
What makes GreptimeDB fast, reliable, and ready for the challenges of next-generation time-series workloads? This chapter peels back the layers of its architecture-revealing the engineering decisions and foundational principles that enable real-time analytics, elastic scalability, and operational predictability. Journey from storage internals to distributed query execution as we unravel the building blocks behind GreptimeDB's exceptional performance and resilience.
The architecture of GreptimeDB is fundamentally shaped by its core design philosophies, which are driven by the specific demands and complexities of modern time-series data workloads. Central to these principles are priorities on time-series efficiency, modularity for extensibility and maintainability, fault isolation to ensure operational resilience, and cloud-native readiness to support scalable deployment environments. These guiding tenets dictate the trade-offs and engineering decisions embedded within the system, optimizing for user needs spanning data ingestion, query performance, and system flexibility.
Together, these design principles create a coherent framework guiding GreptimeDB's evolution, producing a system that addresses the intrinsic challenges of time-series databases while maintaining the adaptability and resilience demanded by contemporary cloud environments. Each architectural decision is a reflection of considered trade-offs, deeply informed by the interplay between theoretical frameworks and practical workload constraints.
GreptimeDB's storage layer is architected to optimize for high-throughput ingestion, efficient querying, and long-term data retention through a sophisticated columnar storage engine, effective time-based partitioning algorithms, and carefully structured on-disk layouts. This combination addresses the critical needs of time-series workloads, balancing read and write performance while controlling storage footprint through compression and metadata management.
At the core of the storage system lies a columnar storage engine tailored for the temporal and multidimensional characteristics of time-series data. Data for each logical table is vertically partitioned into columns, enabling more efficient compression and predicate pushdown during query execution. Columns are stored in contiguous memory regions, providing excellent cache locality for scan operations and vectorized processing. This format markedly reduces I/O overhead by allowing selective column retrieval based on query predicates.
The data ingestion path is optimized for append-only writes, crucial for time-series workloads that predominantly ingest data in sequential temporal order. Writes are initially buffered in an in-memory write-ahead log and a memory store before being flushed in batches to immutable on-disk segments. This batching maximizes sequential disk writes while minimizing random I/O. Because columns are independently encoded, GreptimeDB employs specialized compression codecs that exploit redundant patterns within each column, such as delta encoding for timestamps and dictionary encoding for tags or dimensions.
To organize data physically on disk, GreptimeDB implements a time-based partitioning scheme leveraging the natural ordering of temporal data. Each table is split into multiple partitions, each corresponding to a fixed-length time window, such as hours or days, configurable according to workload and retention policies. This partitioning strategy ensures that queries targeting recent or specific time intervals only scan relevant partitions, reducing unnecessary I/O and latency.
Partitions are managed using a hierarchical index structure that maintains metadata about each time range including minimum and maximum timestamps, cardinality statistics, and column-level encodings. This index supports efficient predicate evaluation and enables rapid pruning of irrelevant partitions during query planning. The partitions themselves comprise multiple immutable segments, which represent the smallest units of on-disk data storage. These segments contain column chunks that hold compressed column data for a subset of rows within the time window.
Segment retention policies operate at the partition level, enabling fine-grained control over data lifecycle management. GreptimeDB supports automatic eviction and archiving of partitions exceeding configured retention durations, facilitating compliance with storage budgets and regulatory requirements. Additionally, the design allows for seamless compaction: older small segments within a partition are merged into larger segments to improve query performance and reduce metadata overhead, while balancing the costs associated with write amplification.
On-disk layout is carefully engineered to maximize throughput for both...
Dateiformat: ePUBKopierschutz: Adobe-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet – also für „fließenden” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!
Weitere Informationen finden Sie in unserer E-Book Hilfe.
Dateiformat: ePUBKopierschutz: ohne DRM (Digital Rights Management)
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet – also für „glatten” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Ein Kopierschutz bzw. Digital Rights Management wird bei diesem E-Book nicht eingesetzt.