Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
Maschinelles Lernen und künstliche Intelligenz sind omnipräsente Begriffe zur Verbesserung von technischen Prozessen. Die praktische Umsetzung an realen Problemen gestaltet sich aber oft schwierig und komplex.
Dieses Lehrbuch erklärt Lernverfahren anhand von analytischen Konzepten im Zusammenspiel mit vollständigen Programmierbeispielen in Python und bezieht sich auf dabei stets auf reale technische Anwendungsszenarien. Es zeigt den Einsatz physikalisch-informierter Lernstrategien, die Einbeziehung von Unsicherheit in die Modellierung und den Aufbau von erklärbarer, vertrauenswürdiger künstlicher Intelligenz mit Hilfe spezialisierter Datenbanken.
Dieses Lehrbuch richtet sich somit sowohl an Studierende der Ingenieurswissenschaften, Naturwissenschaft, Medizin und Betriebswirtschaft als auch an Anwender aus der Industrie (vor allem Data Scientists), Entwickler*innen von Expertendatenbanken und Softwareentwickler*innen.
Dr. Marcus J. Neuer hat in diversen Forschungs- und Industrieprojekten Maschinelles Lernen und erklärbare künstliche Intelligenz für nutzbare, gewinnbringende Anwendungen entwickelt. Er leitet die Forschungs- und Entwicklungsabteilung der innoRIID GmbH und lehrt an der RWTH Aachen sowie der Fachhochschule der Wirtschaft, FHDW. Seine Algorithmen werden heute in verschiedenen Produkten, u.a. in den Bereichen der nuklearen Sicherheit und der Prozessindustrie, erfolgreich eingesetzt.
1Einführung in die Arbeit mit Daten.- 2. Daten als Stochastischer Prozess.- 3.Explorative Analyse (Säubern von Daten, Histogramme, Hauptkomponentenanalyse, Mathematische Transformationen).- 4.Grundlagen überwachter und unüberwachter Lernverfahren.- 5.Physikalisch-Informierte Lernverfahren (Optimierungsmethoden der Datenvorverarbeitung, Integration von transformativ-angereicherten Daten, Integration von mathematischen Modellen).- 6.Stochastische Lernverfahren (Mixture-Density Netze, Kredale Netze).- 7.Semantische Datenbanken.- 8.Erklärbare, vertrauenswürdige künstliche Intelligenz.
Dateiformat: PDFKopierschutz: Wasserzeichen-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Wasserzeichen-DRM wird hier ein „weicher” Kopierschutz verwendet. Daher ist technisch zwar alles möglich – sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.
Weitere Informationen finden Sie in unserer E-Book Hilfe.