Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
This book is a comprehensive guide to mastering Natural Language Processing (NLP), a rapidly growing field in AI-powered text and data analytics. It equips you with tools and techniques to extract valuable insights from both structured and unstructured data, enabling you to uncover insights beyond the reach of traditional data analysis methods and stay competitive in this evolving domain.
The book starts with foundational concepts, such as collecting and extracting data for NLP projects, before progressing to advanced topics like applications of transfer learning in NLP and Large Language Models (LLMs). Each chapter emphasizes real-world applications and includes practical case studies to ensure the knowledge is immediately applicable. Throughout the book, readers will find Python code demonstrations, hands-on projects, and detailed explanations of key concepts. Special features include business use cases from industries like healthcare and customer service, practice exercises to reinforce learning, and explorations of emerging NLP technologies. These elements make the book not only informative but also highly engaging and interactive.
By the end of the book, the reader will have a solid foundation in Generative AI techniques to apply them to complex challenges. Whether you're a budding data scientist or a seasoned professional, this guide will help you harness the power of AI-driven text and data analytics effectively.
What you will learn:
Who this book is for:
This book is tailored for data scientists, machine learning engineers, AI practitioners, and software developers seeking to learn NLP techniques and apply them to solve problems.
Shailendra Kadre is a seasoned professional in machine learning, deep learning, product development, and project management, with 17 years of industry experience at top-notch IT products and services companies. He has held leadership positions in Machine Learning and Product Analytics at HP Inc. and Satyam. Shailendra holds a master's degree in Design Engineering from the Indian Institute of Technology (IIT), Delhi, and an M.Sc. in ML & AI from Liverpool JM University, UK. He is also a certified Project Management Professional (PMP) from the Project Management Institute (PMI). He is the author of the book Practical Business Analytics Using SAS, published by Apress, which has received positive reviews on Amazon. A photography enthusiast and an author, Shailendra has successfully exhibited his landscape photographs, primarily taken in the Southern part of India.
Chapter 1. Natural Language Processing: An Introduction.- Chapter 2. Collecting and Extracting the Data for NLP Projects.- Chapter 3. NLP Data Preprocessing Tasks Involving Strings & Python Regular Expressions.- Chapter 4. NLP Data Preprocessing Tasks with nltk.- Chapter 5. Lexical Analysis.- Chapter 6. Syntactic and Semantic Techniques in NLP.- Chapter 7. Advanced Pragmatic Techniques and Specialized Topics in NLP.- Chapter 8. Transformers, Generative AI, & LangChain.- Chapter 9. Advancing with LangChain & OpenAI.- Chapter 10. Case Study on Symantec Analysis.
Dateiformat: PDFKopierschutz: Wasserzeichen-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Wasserzeichen-DRM wird hier ein „weicher” Kopierschutz verwendet. Daher ist technisch zwar alles möglich – sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.
Weitere Informationen finden Sie in unserer E-Book Hilfe.