Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
This step-by-step guide is for Data Scientists, ML engineers, and DevOps practitioners who need to turn prototypes into secure, scalable production services on AWS and Google Cloud. With step-by-step instructions and practical examples, this book bridges the gap between building Data Science applications and Machine Learning models, and deploying them effectively in real-world scenarios
The book begins with an introduction to essential cloud concepts, providing detailed guidance on setting up a virtual machine (VM) on AWS-and later on Google Cloud-to serve applications. This includes configuring security groups and establishing secure SSH (Secure Shell) connections using VSCode (Visual Studio Code). You will learn how to deploy a dummy HTTP Streamlit application as a foundational exercise before advancing to more complex setups.
Subsequent chapters dive deeper into key deployment practices, such as configuring load balancers, setting up domain and subdomain names, and securing applications with SSL (Secure Sockets Layer) certificates. The book introduces more advanced deployment strategies using Docker containers and Nginx as a reverse proxy, as well as secure serverless deployments of Jenkins, Flask, and Streamlit. You'll also learn how to train machine learning models and use Flask to build APIs that serve those models in production. In addition, the book offers hands-on demonstrations for using Jenkins as an ETL platform, Streamlit as a dashboard service, and Flask for API development. For those interested in serverless architectures, it provides detailed guidance on using AWS ECS (Elastic Container Service) Fargate and Google Cloud Run to build scalable and cost-effective solutions.
By the end of this book, you will possess the skills to deploy and manage data science applications on the cloud with confidence. Whether you are scaling a personal project or deploying enterprise-level solutions, this book is your go-to resource for secure and seamless cloud deployments.
What You Will Learn
Who This Book Is For
Beginning to intermediate professionals with a basic understanding of Python, including Data Scientists, ML Engineers, Data Engineers, and Data Analysts who aim to securely deploy their projects in production environments, and individuals working on both personal projects and enterprise-level solutions, leveraging AWS and Google Cloud setups
Lucas Braga is a Lead Data Scientist and AI Cloud Engineer with more than 10 years of experience. He served as Senior Data Scientist, Staff Data Scientist, and Manager at leading organizations such as DHL, Delivery Hero, and Wolt (a subsidiary of DoorDash).
He holds a master's degree in Applied Statistics and Data Science from Kansas University, along with a Google Cloud certification and extensive experience with AWS. His expertise spans Data Science, Software Engineering, DevOps, Data Engineering, and Business Analytics, enabling him to deploy machine learning models securely and efficiently in production environments. Recognizing a critical industry gap in deploying applications that meet corporate security standards, Lucas combined his deep technical knowledge and teaching skills to create this book. It provides practical, security-focused guidance for Data Scientists and Software Engineers looking to enhance their deployment skills.
Part I: Building the Foundation.- Chapter 1: Initial Setup on Your AWS Account (aws.amazon.com).- Chapter 2: SSH to the EC2 Instance with VSCode and Necessary Setup.- Chapter 3: Load Balancer on your AWS Console.- Chapter 4: Domain Name and SSL Certificates.- Chapter 5. Deploying More Robust Applications (Jenkins, Flask, and Streamlit).- Chapter 6. Create and Secure your Subdomains.- Chapter 7. How to setup this infrastructure on Google Cloud Platform (GCP).- Chapter 8. Advanced Deployment in GCP: Auto Scaling and Load Balancing Across Global Regions.- Part II: Serverless Deployments.- Chapter 9. Serverless Deployment with Google Cloud Run.- Chapter 10. Serverless Deployment with AWS.- Part III: Jenkins, Streamlit and Flask Demos.- Chapter 11. Demo: Using Jenkins as an ETL/ELT Platform for Data Science.- Chapter 12. Demo: Streamlit.- Chapter 13. Demo: Flask.
Dateiformat: PDFKopierschutz: Wasserzeichen-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Wasserzeichen-DRM wird hier ein „weicher” Kopierschutz verwendet. Daher ist technisch zwar alles möglich – sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.
Weitere Informationen finden Sie in unserer E-Book Hilfe.