Vorwort
Die Autoren
Bemerkungen für Dozenten
Verzeichnis der Übersichten
Teil I: Einführung und Grundlagen. 1 Mathematik - Wissenschaft und Werkzeug. 2 Logik, Mengen, Abbildungen - die Sprache der Mathematik. 3 Rechentechniken - die Werkzeuge der Mathematik. -4 Elementare Funktionen - Bausteine der Analysis.- 5 Komplexe Zahlen - Rechnen mit imaginären Größen.
Teil II: Analysis einer reellen Variablen.- 6 Folgen - der Weg ins Unendliche. 7 Stetige Funktionen - kleine Ursachen haben kleine Wirkungen. 8 Reihen - Summieren bis zum Letzten. 9 Potenzreihen - Alleskönner unter den Funktionen. 10 Differenzialrechnung - Veränderungen kalkulieren. 11 Integrale - vom Sammeln und Bilanzieren. 12 Integrationstechniken - Tipps, Tricks und Näherungsverfahren. 13 Differenzialgleichungen - Zusammenspiel von Funktionen und ihren Ableitungen.
Teil III: Lineare Algebra.- 14 Lineare Gleichungssysteme - Grundlagen der linearen Algebra. 15 Vektorräume - Schauplätze der linearen Algebra. 16 Matrizen und Determinanten - Zahlen in Reihen und Spalten. 17 Lineare Abbildungen und Matrizen - abstrakte Sachverhalte in Zahlen ausgedrückt. 18 Eigenwerte und Eigenvektoren - oder wie man Matrizen diagonalisiert. 19 Analytische Geometrie - Rechnen statt Zeichnen. 20 Euklidische und unitäre Vektorräume - Geometrie in höheren Dimensionen. 21 Quadriken - ebenso nützlich wie dekorativ. 22 Tensorrechnung - geschicktes Hantieren mit Indizes. 23 Lineare Optimierung - ideale Ausnutzung von Kapazitäten.
Teil IV: Analysis mehrerer reeller Variablen.- 24 Funktionen mehrerer Variablen - Differenzieren im Raum. 25 Gebietsintegrale - das Ausmessen von Körpern. 26 Kurven und Flächen - von Krümmung, Torsion und Längenmessung. 27 Vektoranalysis - von Quellen und Wirbeln. 28 Differenzialgleichungssysteme - ein allgemeiner Zugang zu Differenzialgleichungen. 29 Partielle Differenzialgleichung - Modelle von Feldern und Wellen.
Teil V: Höhere Analysis.- 30 Fouriertheorie - von schwingenden Saiten. 31 Funktionalanalysis - Operatoren wirken auf Funktionen. 32 Funktionentheorie - von komplexen Zusammenhängen. 33 Integraltransformationen - Multiplizieren statt Differenzieren. 34 Spezielle Funktionen - nützliche Helfer. 35 Optimierung und Variationsrechnung - Suche nach dem Besten.
Teil VI: Wahrscheinlichkeitsrechnung und Statistik.- 36 Deskriptive Statistik - wie man Daten beschreibt. 37 Wahrscheinlichkeit - die Gesetze des Zufalls. 38 Zufällige Variable - der Zufall betritt den R1. 39 Spezielle Verteilungen - Modelle des Zufalls. 40 Schätz- und Testtheorie - Bewerten und Entscheiden. 41 Lineare Regression - die Suche nach Abhängigkeiten.
Hinweise zu den Aufgaben
Lösungen zu den Aufgaben
Bildnachweis
Index