Chapter 1. Smooth manifolds.- Chapter 2. Tangent spaces.- Chapter 3. Partition of unity.- Chapter 4. The derivative.- Chapter 5. The tangent bundle.- Chapter 6. Submanifolds.- Chapter 7. The Whitney theorems.- Chapter 8. Vector fields.- Chapter 9. Flows.- Chapter 10. Lie groups.- Chapter 11. The Lie algebra of a Lie group.- Chapter 12. Smooth actions of Lie groups.- Chapter 13. Homogeneous spaces.- Chapter 14. Distributions and integrability.- Chapter 15. Foliations and the Frobenius theorem.- Chapter 16. Bundles.- Chapter 17. The fibre bundle construction theorem.- Chapter 18. Associated bundles.- Chapter 19. Tensor and exterior algebras.- Chapter 20. Sections of vector bundles.- Chapter 21. Tensor fields.- Chapter 22. The Lie derivative revisited.- Chapter 23. The exterior differential.- Chapter 24. Orientations and manifolds with boundary.- Chapter 25. Smooth singular cubes.- Chapter 26. Stokes' theorem.- Chapter 27. The Poincaré lemma and the de Rham theorem.