Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
This volume provides a broad overview of state-of-the-art research on dynamical systems on networks. The chapters are based on contributions to the Final Conference of the COST Action 'CA18232: Mat-Dyn-Net: Mathematical Models for Interacting Dynamics on Networks. Specific topics covered include:
Mathematical Models for Interacting Dynamics on Networks will appeal to researchers interested in these active areas.
A review of a work by L. Raymond: Sturmian Hamiltonians with a large coupling constant - periodic approximations and gap labels.- Compactness of linearized Boltzmann operators for polyatomic gases.- Discrete Boltzmann Equation for Anyons.- Action potential dynamics on heterogenous neural networks: from kinetic to macroscopic equations.- A space-dependent Boltzmann-BGK model for gas mixtures and its hydrodynamic limits.- A delayed model for tumor-immune system interactions.- Geometric optimization problem for vascular stents.- Journey Through the World of Dynamical Systems on Networks.- A Payne-Whitham model of urban traffic networks in the presence of traffic lights and its application to traffic optimisation.- A Novel Use of Pseudospectra in Mathematical Biology: Understanding HPA Axis Sensitivity.- The virial theorem and the method of multipliers in spectral theory.- Well-posedness and long-term behaviour of buffered flows in infinite networks.- Numerical Study of the Higher-Order Maxwell-Stefan Model of Diffusion.- Fourth-order operators with unbounded coefficients in $L^1$ spaces.- Graph structure of the nodal set and bounds on the number of critical points of eigenfunctions on Riemannian manifolds.- Investigating dynamics and asymptotic trend to equilibrium in a reactive BGK model.- Polynomial Stability of a Coupled Wave-Heat Network.