Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
Expert guidance on technologies to build the Internet of Things (IoT) from electrical engineering and power industry perspectives
IoT for Smart Grid presents advanced Internet of Things (IoT) technologies that are utilized in various aspects of smart electrical systems, especially monitoring, diagnosis, automation, and industrial evolution, from the point of view of both electrical engineering and power industry facilities and resources.
The book describes how IoT has expanded the use of wireless sensor networks (WSN) to play a vital role in connecting power industry facilities and resources to reduce energy consumption and costs. It also explores concepts of e-mobility that include smart parking, vehicle monitoring, and charging, and considers future challenges such as security and privacy concerns in transactive systems and scalability and standardization issues.
Later chapters describe communication protocols for transactive IoT, smart grid integration, cybersecurity challenges, smart energy management, and more. Relevant examples and practical case studies are included to enrich and reinforce learning.
Edited by a team of highly qualified professionals in the field, IoT for Smart Grid explores additional topics such as:
IoT for Smart Grid is a definitive reference for identifying and applying advanced technologies and concepts and a highly valuable learning resource for students, researchers, consultants, and utility engineers in the design, use, and maintenance of electrical power systems.
Rahiman Zahira, PhD, SMIEEE, is an Associate Professor at B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India.
Palanisamy Sivaraman, SMIEEE, is a Research Scholar at Anna University, Chennai, India.
Chenniappan Sharmeela, PhD, SMIEEE, is a Professor, DEEE, and an Adjunct Professor with the Centre for E-Vehicle Technologies and the Centre for Energy Storage Technology, CEG campus, at Anna University, Chennai, India.
Sanjeevikumar Padmanaban, PhD, SMIEEE, is a Full Professor in Power Electronics with the Department of Electrical Engineering, IT and Cybernetics at the University of South-Eastern Norway, Norway.
About the Editors xxvii
List of Contributors xxxi
1 Introduction to the Internet of Things 1Anbazhagan Lavanya, Jayachandran Divya Navamani, and Rahiman Zahira
1.1 Introduction 1
1.2 Evolution of IoT 2
1.3 Need for IoT 3
1.4 Energy Management 4
1.5 Main Components Used in IoT 5
1.6 IoT Devices 6
1.7 IoT Characteristics 7
1.8 IoT Market Share 11
1.9 Conclusion 14
References 15
2 IoT Fundamentals: Platforms, Architectures, and Sensor Technologies 17Naseer Ahamed Javed, Yogesh Rajkumar, and Kallankurichy P. Kaliyamurthie
2.1 Introduction 17
2.2 Overview of IoT System Architectures and Design Principles 17
2.3 Exploring IoT/M2M Systems and Their Role in Connectivity 23
2.4 Introduction to Sensors and Transducers in IoT 25
2.5 LoWPAN Network Management Protocol (LNMP) 27
2.6 WSN Diagnostic Tools: Ensuring Reliability and Performance 29
2.7 Overview of IoT Communication Technologies 31
2.8 Practical Applications of IoT Platforms, Sensor Technologies and Communication Protocols 34
References 40
3 Communication Protocols for Transactive IoT 43A. Kamalasegaran, G. Kabilan, and P. Sriramalakshmi
3.1 Introduction 43
3.2 Transactive Systems in Smart Grids 43
3.3 MQTT, CoAP, and Other Protocols in Transactive Systems 45
3.4 Data Distribution Service (DDS) 49
3.5 Edge Computing and Real-Time Implementation 50
3.6 Reliability and Scalability 54
3.7 Case Studies and Real-Life Implementations 57
3.8 Conclusion 58
References 59
4 Transactive IoT: Merging Transactions and Connectivity 63Burhan Khan, Aabid A. Mir, Naser S. Almutairi, and Khang W. Goh
4.1 Introduction 63
4.2 IoT Integration with Transactive Models 64
4.3 Transactive IoT in Modern Applications 66
4.4 Economic and Market-Based Approaches 71
4.5 Transactive IoT System Architecture 73
4.6 Challenges and Solutions 78
4.7 Conclusion 81
References 82
5 IoT Devices in Transactive System 87G. Jagadish and P. Sriramalakshmi
5.1 Introduction 87
5.2 Integration of IoT Devices for Data Collection 88
5.3 Role of Sensor 90
5.4 Sensor Types 91
5.5 Role of Sensors During Data Collection 92
5.6 Role of Actuators 93
5.7 Challenges Faced in Device Connectivity 95
5.8 Challenges in Data Security 96
5.9 Conclusion 101
References 101
6 IoT in Power Electronics: Transforming the Future of Energy Management 107Dhandapani Lakshmi, Rahiman Zahira, Vallikanu Pramila, Gunasekaran Ezhilarasi, Rajesh K. Padmashini, Palanisamy Sivaraman, and Chenniappan Sharmeela
6.1 Introduction to IoT in Power Electronics 107
6.2 IoT in Power Conversion: Enhancing Efficiency and Reliability 112
6.3 Introduction to IIoT-Driven Automation 115
6.4 Future Prospects of IoT in Power Conversion 116
6.5 Regulatory and Standardization Considerations 119
6.6 IoT in Power Transmission for Long Distance 119
6.7 Conclusion 123
References 124
7 Harnessing IoT: Transforming Smart Grid Advancements 127Pijush K. Dutta Pramanik, Bijoy K. Upadhyaya, Ajay Kushwaha, and Debashish Bhowmik
7.1 Introduction to Smart Grid and IoT Integration 127
7.2 Architecture of a Smart Grid IoT System 131
7.3 Remote Control and Automation in Smart Grids 137
7.4 Automated Load Shifting Strategies Using IoT 141
7.5 IoT Applications for Real-Time Monitoring of Smart Grids 142
7.6 Challenges in Implementing IoT in Smart Grids 151
7.7 Economics of IoT-Enabled Smart Grid 154
7.8 Smart Grid in India 167
7.9 Conclusions 169
References 170
8 Cybersecurity Challenges in Smart Grid IoT 175Zain Buksh, Neeraj A. Sharma, Rishal Chand, Jashnil Kumar, and A. B. M. Shawkat Ali
8.1 Introduction 175
8.2 Research Background 178
8.3 Cybersecurity Challenges in Smart Grid IoT 183
8.4 Case Studies and Real-World Examples 194
8.5 Future Trends and Considerations 200
8.6 Conclusions 201
References 202
9 IoT-Based Monitoring for Substations 207Rajesh K. Padmashini, Dhandapani Lakshmi, Rajasekharan Rajasree, Janarthanan N. Rajesh Kumar, Rahiman Zahira, Palanisamy Sivaraman, and Chenniappan Sharmeela
9.1 Introduction to IoT-Based Monitoring for Substations 207
9.2 Components of Substation Automation and Monitoring 208
9.3 Architecture of Substation Automation 209
9.4 The Need for IoT in Substation Monitoring 210
9.5 Automation and Control in Substation Environment 211
9.6 Substation Automation and Monitoring 213
9.7 Examples 215
9.8 Others 217
9.9 Conclusion 218
References 218
10 IoT Application in Condition Monitoring and Fault Diagnosis in Electrical Systems 221Ravichandran Karthick Manoj, Dhandapani Lakshmi, Rajasekharan Rajasree, Sukumaran Aasha Nandhini, Palanisamy Sivaraman, and Rahiman Zahira
10.1 Introduction 221
10.2 Importance of Condition Monitoring (CM) in Electrical Systems 222
10.3 Enhancing Reliability and Performance of Condition Monitoring 223
10.4 Proactive Maintenance Strategies Enabled by Condition Monitoring 223
10.5 Methods of Condition Monitoring 224
10.6 Implementation of Vibration Analysis 225
10.7 Vibration 226
10.8 What Can Vibration Analysis Detect? 229
10.9 Block Diagram of Vibration Monitoring System 231
10.10 Industrial Applications of Vibration Analysis 232
10.11 Advantages of Vibration Analysis for Condition Monitoring in Electrical Systems 234
10.12 Disadvantages of Vibration Analysis for Condition Monitoring in Electrical Systems 234
10.13 Importance of Fault Diagnosis in Electrical System 235
10.14 Integration with IoT of Conditional Monitoring Electrical System 236
10.15 Real-Time Monitoring and Predictive Maintenance 237
10.16 Energy Management and Asset Performance Optimization 238
10.17 Safety, Compliance, and Future Trends 239
10.18 Future Trends in IoT Application in Condition Monitoring and Fault Diagnosis in Electrical Systems 239
References 240
11 IoT-Powered Robust Anomaly Detection and CNN-Enabled Predictive Maintenance to Enhance Solar PV System Performance 243Kumaresa P. Punitha
11.1 Introduction 243
11.2 IoT Application in Condition Monitoring 244
11.3 IoT Application in Fault Prediction 245
11.4 Overview of Solar PV System Faults 245
11.5 Need for IoT and CNN Algorithm for Anomaly Detection of Solar PV System 247
11.6 System Description 248
11.7 Proposed Algorithm 248
11.8 Results and Discussion 249
11.9 Conclusion 254
References 254
12 Advancements in Smart Energy Management: Enhancing Efficiency Through Advanced Metering Infrastructure and Energy Monitoring 257S. Nazrin Salma, A. Niyas Ahamed, and G. Srinivasan
12.1 Introduction to Smart Energy Management 257
12.2 Evolution of Energy Management Systems 258
12.3 Traditional Energy Management 258
12.4 Transition to Smart Grids 259
12.5 Role of Smart Meters and Advanced Metering Infrastructure 260
12.6 Effects on Contemporary Energy Systems 260
12.7 Digital Innovations in Energy Management 260
12.8 Smart Meters: Empowering Consumers 263
12.9 Revolutionizing Energy Consumption 263
12.10 Advanced Metering Infrastructure (AMI): Streamlining Energy 264
12.11 Case Studies of Successful AMI Implementations 264
12.12 Energy Monitoring and Management 265
12.13 Examples of Energy Management Practices 266
12.14 Illustrations and Case Studies in the Practical Application of Smart Energy Management 266
12.15 Optimization of Urban Grids and IoT Devices 266
12.16 Challenges and Opportunities in Smart Energy 267
12.17 Opportunities for Advancements 268
12.18 Real-Time Optimization 268
12.19 Automated Decision-Making 268
12.20 Enhancing Efficiency and Reliability 269
12.21 Real-Time Optimization of Storage Solutions 269
12.22 Managing Variability and Intermittency 269
12.23 Grid Resilience and Stability 270
12.24 Insights into Potential Vulnerabilities 270
12.25 Automation of Grid Operations 270
12.26 Regulatory Frameworks and Policies 271
12.27 Conclusion: The Future of Smart Energy Management 271
References 272
13 IoT for Power Quality Applications 275Rahiman Zahira, Dhandapani Lakshmi, Shanmugasundaram Logeshkumar, Palanisamy Sivaraman, Chenniappan Sharmeela, and Sanjeevikumar Padmanaban
13.1 Introduction to Power Quality in Modern Electrical Systems 275
13.2 Power Quality Standards 276
13.3 Power Quality Solutions 277
13.4 IOT for Power Quality 280
13.5 The Role of IoT in Enhancing Power Quality 281
13.6 Architecture for Power Quality Management Using IoT 282
13.7 IoT Architecture for Smart Grid and Power Quality Applications 283
13.8 IoT Sensors and Devices for Power Quality Monitoring 286
13.9 Conclusions 287
References 288
14 An IoT and 1D Convolutional Neural Network-Based Method for Smart Building Energy Management 291Aleena Swetapadma, Nalini P. Behera, Harsh Saran, and Saurav Kumar
14.1 Introduction 291
14.2 One-Dimensional Convolutional Neural Network 292
14.3 Proposed Method 292
14.4 Result 296
14.5 Discussion 298
14.6 Conclusion 299
References 299
15 IoT for E-Mobility 301Shanmugasundaram Logeshkumar, Krishnakumar Shanmugasundaram, Rahiman Zahira, Palanisamy Sivaraman, and Chenniappan Sharmeela
Introduction 301
15.1 What Is IoT for E-Mobility? 301
15.2 Benefits of IoT for E-Mobility 302
15.3 Challenges of IoT for E-Mobility 302
15.4 The Future of IoT for E-Mobility 303
15.5 Various Considerations and Possibilities of IoT for E-Mobility 304
15.6 Conclusion 331
References 332
16 Standards for Internet of Things (IoT) 335Mohamed Mustafa Mohamed Iqbal, Balasubramanian Nandhan, Sakthivel Sruthi, Ravikumar Mithra, Rajagopal Logesh Krishna, Rahiman Zahira, Balan Gunapriya, and Veerasamy Balaji
16.1 Introduction 335
16.2 Smart Grid, Smart Transportation, and Smart Cities 336
16.3 Standardization of IoT Environment 337
16.4 IoT Standards in Healthcare 338
16.5 IoT Standards in Agriculture and Food Industry 341
16.6 IoT Standards in Smart Home and Industrial Automation 347
16.7 IoT Standards for Disaster Management 351
16.8 IoT Standards in Cybersecurity and Data Science Domain 353
16.9 Research Scope for Future Work 355
16.10 Conclusion 355
References 356
17 Challenges and Future Directions 363Burhan Khan, Aabid A. Mir, Nur F.L.M. Rosely, and Khang W. Goh
17.1 Introduction 363
17.2 Security and Privacy Concerns in Transactive Systems 366
17.3 Scalability and Standardization Issues 370
17.4 Emerging Trends in Transactive IoT 373
17.5 Future Developments in Transactive IoT 376
17.6 Policy, Regulation, and Ethical Considerations 378
17.7 Conclusion 380
References 382
Index 387
Dr. Rahiman Zahira is an IEEE Senior Member. She received her BE in Electrical and Electronics Engineering from the University of Madras in 2004, her ME in Power Systems Engineering from B.S. Abdur Crescent Engineering College, Anna University, Chennai, in 2006, and earned her Doctoral degree from Anna University in February 2018. With 18 years of teaching experience, she began her academic career as a lecturer in 2006 and currently serves as an associate professor at B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai. She has published over 70 publications in national and international journals and conference proceedings, contributed to 11 book chapters, edited 3 books. She also holds one international patent (granted) and three patents (published). Dr. Zahira is actively involved in the IEEE Standards Association. She serves as a working group member of IEEE P1729 - Recommended Practice for Electric Power Distribution System Analysis, IEEE P2882 WG-STDS-P2882, WG-SG2 Steady-state, Harmonic and Dynamic Stability, and as secretary and working group member of the IEEE PES Task Force session on Demand Flex metrics standardization for grid-interactive buildings and customer systems.
She has received awards from Guinness World Records (UK), World Book of Records (London) for participating in the longest 150-hour conference, Asian Book, and Indian Book of Records for being an editor and author in a record book titled "Most authors contributing for a single book: COVID-19 and its impact." She has also been honored with the Best Innovation in Teaching Award 2021, the Young Educator & Scholar Award in the 10th National Teachers' Day Awards 2019, the Women Researcher Award, the Outstanding Scientist Award, the Innovative Technological Researcher & Dedicated Academician Award (Electrical Engineering), and the Best Academics award from the BSA Crescent Alumni Association during Hangout 2019. Dr. Zahira has guided over 20 undergraduates and postgraduate students and 2 research scholars. She is a life member in 7 Professional Bodies. She serves as a reviewer for reputable journals, an editorial board member, and an advisory member for numerous conferences. Her areas of interest include power quality, harmonic suppression, active filter control techniques, renewable energy systems, microgrids, smart grids, and electric vehicle charging systems.
ORCID ID: https://orcid.org/my-orcid?orcid=0000-0002-5492-9048
LinkedIn: https://www.linkedin.com/in/drrzahira/
Google Scholar ID: https://scholar.google.com/citations?user=NcKB9_UAAAAJ&hl=en
Mr. Palanisamy Sivaraman (Member'20, Senior Member'21, IEEE) was born in Vellalur, Madurai district, Tamil Nadu, India. He completed schooling in Government Higher Secondary School, Vellalur and earned a BE in Electrical and Electronics Engineering and an ME in Power Systems Engineering from Anna University, Chennai, India, in 2012 and 2014, respectively. With over 10 years of industrial experience, he specializes in the field of power system studies and grid code compliance for renewable power plants, including solar and wind power plants and battery energy storage systems. Currently, he is an industry working professional and also a Research Scholar, Department of EEE, Anna University, Chennai, India. He has trained over 500 personnel on renewable energy and power quality. A proficient user of power system simulation software like ETAP, PSCAD, DIGSILENT POWER FACTORY, PSSE, and MATLAB, he actively participates in the IEEE Standards Association. Mr. Sivaraman is a working group member of IEEE standard, including P2800.2 (Recommended Practice for Test and Verification Procedures for Inverter-based Resources (IBRs) Interconnecting with Bulk Power Systems), P1729 (IEEE Recommended Practice for Electric Power Distribution System Analysis), P2418.5 (Standard for Blockchain in Power and Energy), P1854 (Guide for Smart Distribution Systems), P2688 (Recommended Practice for Energy Storage Management Systems in Energy Storage Applications), and IEEE 3001.9-2023 (Design of Power Systems Supplying Lighting Systems in Commercial and Industrial Facilities).
He is also a member of the IEEE PES task force on Energy Storage. He had authored/co-authored/edited ten books in the field of electrical engineering with Elsevier and Wiley-IEEE Press and published several papers at national and international conferences. Mr. Sivaraman is a Senior Member of the Institute of Electrical and Electronics Engineers (IEEE), a member of the International Council on Large Electric Systems (CIGRE), and an Associate Member of the Institution of Engineers (India). He holds a Professional Engineer (PEng) certification from the Institution of Engineers, India. He is a recognized speaker well versed in both National and International Standards.
Google Scholar link: https://scholar.google.co.in/citations?user=XLdd0mgAAAAJ&hl=en&authuser=1
Dr. Chenniappan Sharmeela holds a BE in Electrical and Electronics Engineering, an ME in Power Systems Engineering from Annamalai University, Chidambaram, and a PhD in Electrical Engineering from the College of Engineering, Guindy, Anna University, Chennai. She currently serves as Professor and Professor-In-Charge of Power Engineering and Management in the Department of Electrical and Electronics Engineering at C.E.G., Anna University, Chennai. She is also actively involved in research as a professor at the Centre for E-Vehicle Technologies and the Centre for Energy Storage Technology, Anna University, Chennai. From 2015 to 2018, she served as Assistant Director of the Centre for Entrepreneurship Development at C.E.G., Anna University, Chennai. Dr. Sharmeela has undertaken numerous consultancies on Renewable Energy Systems, including Solar Photovoltaic (SPV) Power Systems, power quality measurements, and the design of compensators for industries. She has coordinated and organized several short-term courses on power quality for Tamil Nadu State Electricity Board Engineers. She has delivered several invited talks and trained over 1000 engineers on the importance of Power Quality, Power Quality Standards, and the design of SPV power systems for more than 12 years in leading organizations such as CII, FICCI, CPRI, MSME, GE (Alsthom), and APQI. In 2011, she received a grant from CTDT, Anna University, for a two-year project on "Energy Efficient Solar-Based Lighting System for Domestic Application." In 2020, she received a research grant from AICTE - RPS, New Delhi, India, on "Smart EV Charging Station." Dr. Sharmeela has authored over 30 journal papers in refereed international journals and more than 60 papers in international and national conferences. She has authored/co-authored/edited 12 book chapters, edited 10 books, and authored 2 books. Her areas of interest include power quality, power electronics applications to power systems, smart grid, energy storage systems, renewable energy systems, electric vehicles, battery management systems, and electric vehicle supply equipment. She is a Senior Member of IEEE; a Member of the IEEE - Power and Energy Society; a Fellow of the Institution of Engineers (India); a Life Member of ISTE; a member of the Central Board of Irrigation and Power (CBIP), New Delhi, India; and a member of SSI, India. With over 24 years of experience in teaching, research, and consultancy in the areas of power quality and power systems, Dr. Sharmeela is an active participant in the IEEE Standards Association. She is a working group member of IEEE standards P2800.2 (Recommended Practice for Test and Verification Procedures for Inverter-based Resources Interconnecting with Bulk Power Systems) and P1729 (Recommended Practice for Distribution System Analysis). She is also a working group member of the IEEE PES task force on Energy Storage. She has authored/co-authored/edited nine books in the field of electrical engineering with Elsevier and Wiley-IEEE Press, notably "Fast charging infrastructure for electric and hybrid electric vehicles" by Wiley-IEEE Press in 2023 and "Power system operation with 100% renewable energy resources" by Elsevier in 2023.
ORCID ID: https://orcid.org/0000-0001-6706-4779
Dr. Sanjeevikumar Padmanaban (Member'12-Senior Member'15, IEEE) received a Ph.D. degree in electrical engineering from the University of Bologna, Bologna, Italy 2012. He is a Full Professor in Electrical Power Engineering at the Department of Electrical Engineering, Information Technology, and Cybernetics, University of South-Eastern Norway, Norway. S. Padmanaban has authored over 750+ scientific papers and received the Best Paper cum Most Excellence Research Paper Award from IET-SEISCON'13, IET-CEAT'16, IEEE-EECSI'19, IEEE-CENCON'19, and five best paper awards from ETAEERE'16 sponsored Lecture Notes in Electrical Engineering, Springer book. He is a Fellow of the Institution of Engineers, India, the Institution of Electronics and Telecommunication Engineers, India, and the Institution of Engineering and Technology, U.K. He received a lifetime achievement award from Marquis Who's Who - USA 2017 for contributing to power electronics and renewable energy research. He is listed among the world's top 2 scientists (from 2019) by Stanford University USA.
He served an Editor/Associate Editor/Editorial Board for refereed journals, in particular the IEEE Systems Journal,...
Dateiformat: ePUBKopierschutz: Adobe-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet – also für „fließenden” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!
Weitere Informationen finden Sie in unserer E-Book Hilfe.