Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
The cylinder block is the basic framework of a car engine. It supports and holds all the other engine components. Figure 2.1 shows a typical cylinder block without an integrated crankcase. Figure 2.2 shows the block with the upper part of the crankcase included. Figure 2.31 schematically illustrates the relative positions of the cylinder, piston and piston ring. The cylinder is a large hole machined in the cylinder block, surrounded by the cylinder wall. The piston rapidly travels back and forth in the cylinder under combustion pressure. The cylinder wall guides the moving piston, receives the combustion pressure, and conveys combustion heat outside the engine. Figure 2.4 gives an analysis of the materials needed for a cylinder with high output power and summarizes the reasons why a specific material or technology is chosen to fulfil a required function. A more detailed description is given in Appendix B.
The black portions in Fig. 2.3 indicate the areas that are most exposed to friction. These parts need to be carefully designed not only from the viewpoint of lubrication but also tribology, as this has a significant influence on engine performance. Tribology can be defined as the science and technology of interacting surfaces in relative motion, and includes the study of friction, wear and lubrication. Combustion heat discharges at a very high rate and, if not diffused, the raised temperature can lead to tribological problems.
The cylinder must maintain an accurate roundness and straightness of the order of µm during operation. The cylinder bore wall typically experiences local wear at the top-dead-center point, where the oil film is most likely to fail, and scratching along the direction of travel of the piston. Figure 2.5 shows vertical scratching caused by scuffing. The grooves caused by scratching increase oil consumption and blow-by. In extreme cases, the piston seizes to the bore wall. The demand for higher output with improved exhaust gas emission has recently increased heat load to the cylinder even more. A much lighter weight design is also required.
An engine generating high power output requires more cooling, since it generates more heat. Automotive engines have two types of cooling systems, air-cooled and water-cooled. Figure 2.1 shows the air-cooled type and Fig. 2.2 the water-cooled type. Whilst an air-cooled engine may use a much simpler structure because it does not use the water-cooled system, the heat management of the cylinder block is not as easy. As a result, most automotive engines nowadays use water-cooled systems. It would be no exaggeration to say that the required cooling level for an individual engine determines its cylinder structure.
Figure 2.6 shows cutaway views of four different types of cylinder block structure. The monolithic or quasi-monolithic block (on the right) is made of only one material. It is also called a linerless block because it does not contain liners (described later). The bore wall consists of either the same material as the block or a modified surface such as plating to improve wear resistance. It is normally difficult for one material to fulfill the various needs listed in Fig. 2.4. However a liner-less design in multi-bore engines can make the engine more compact by decreasing inter-bore spacing.
The other designs in Fig. 2.6 (on the left) incorporate separate liners. A liner is also called a sleeve. A wet liner is directly exposed to coolant at the outer surface so that heat directly dissipates into the coolant. To withstand combustion pressure and heat without the added support of the cylinder block, it must be made thicker than a dry liner. A wet liner normally has a flange at the top. When the cylinder head is installed, the clamping action pushes the liner into position. The cylinder head gasket keeps the top of the liner from leaking. A rubber or copper O-ring is used at the bottom, and sometimes at the top, of a wet liner to prevent coolant from leaking into the crankcase. A dry liner presses or shrinks into a cylinder that has already been bored. Compared to the wet liner, this liner is relatively thin and is not exposed to the coolant. The cast-in liner design encloses the liner during the casting process of an entire cylinder block.
Table 2.1 lists various types of cylinder structures, their processing and characteristics. Cylinder blocks are normally made of cast iron or aluminum alloy. The aluminum block is much lighter. Various types of materials are combined to increase strength. In the following sections, we will look at the blocks of four-stroke engines. Those for two-stroke engines are discussed in the final section.
Table 2.1
Cylinder structures
The use of cast iron blocks in Table 2.1 has been widespread due to low cost as well as formability. Figure 2.2 shows a V6 block used for a car engine. The block is normally the integral type where the cylinders and upper crankcase are all one part. The cylinders are large holes that are machined into the block. The iron for the block is usually gray cast iron having a pearlite-microstructure, typically being JIS-FC200 (Table 2.2). The microstructure is shown in Fig. 2.7. Gray cast iron is so called because its fracture has a gray appearance. Ferrite in the microstructure of the bore wall should be avoided because too much soft ferrite tends to cause scratching, thus increasing blow-by.
Table 2.2
Chemical compositions (%). JIS-FC200 is a flake graphite cast iron having a strength of 200 MPa. JIS-AC4B and ADC12 are aluminum alloy for castings. A 390 is a hyper-eutectic Al-Si...
Dateiformat: ePUBKopierschutz: Adobe-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet – also für „fließenden” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!
Weitere Informationen finden Sie in unserer E-Book Hilfe.
Dateiformat: PDFKopierschutz: Adobe-DRM (Digital Rights Management)
Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.
Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!
Dateiformat: ePUBKopierschutz: Wasserzeichen-DRM (Digital Rights Management)
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet - also für „fließenden” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Wasserzeichen-DRM wird hier ein „weicher” Kopierschutz verwendet. Daher ist technisch zwar alles möglich – sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.