Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
Nuclear magnetic resonance (NMR) is an analytical tool used by chemists and physicists to study the structure and dynamics of molecules. In recent years, no other technique has gained such significance as NMR spectroscopy. It is used in all branches of science in which precise structural determination is required and in which the nature of interactions and reactions in solution is being studied. Annual Reports on NMR Spectroscopy has established itself as a premier means for the specialist and non-specialist alike to become familiar with new techniques and applications of NMR spectroscopy.
[1] Gurd FRN, Rothgeb TM. Motions in protein. Adv. Protein Chem. 1979;33:73–165.
[2] Creighton TE. Proteins. Structures and Molecular Properties. second ed. New York, NY: W. H. Freeman and Company; 1993.
[3] Abragam A. The Principles of Nuclear Magnetism. Oxford: Claredon Press; 1961.
[4] Ernst RR, Bodenhausen G, Wokaun A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Oxford: Clarendon Press; 1987.
[5] Evans JNS. Biomolecular NMR Spectroscopy. Oxford: Oxford University Press; 1995.
[6] Becker ED. High Resolution NMR, Theory and Chemical Applications. third ed. San Diego, CA: Academic Press; 2000.
[7] Slichter CP. Principles of Magnetic Resonance. third enlarged and updated ed. Berlin: Springer Verlag; 1989.
[8] Lipari G, Szabo A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc. 1982;104:4546–4559.
[9] Lipari G, Szabo A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results. J. Am. Chem. Soc. 1982;104:4559–4570.
[10] Clore GM, Szabo A, Bax A, Kay LE, Driscoll PC, Gronenborn AM. Deviations from the simple two-parameter model-free approach to the interpretation of nitrogen-15 nuclear magnetic relaxation of proteins. J. Am. Chem. Soc. 1990;112:4989–4991.
[11] Palmer III AG. Probing molecular motion by NMR. Curr. Opin. Struct. Biol. 1997;7:732–737.
[12] Palmer III AG, Kroenke CD, Loria JP. Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Enzymol. 2001;339:204–238.
[13] Akke M. NMR methods for characterizing microsecond to millisecond dynamics in recognition and catalysis. Curr. Opin. Struct. Biol. 2002;12:642–647.
[14] Palmer III AG. NMR characterization of the dynamics of biomacromolecules. Chem. Rev. 2004;104:3623–3640.
[15] Palmer III AG, Grey MJ, Wang C. Solution NMR spin relaxation methods for characterizing chemical exchange in high-molecular-weight systems. Methods Enzymol. 2005;394:430–465.
[16] Boehr DD, Dyson HJ, Wright PE. An NMR perspective on enzyme dynamics. Chem. Rev. 2006;106:3055–3079.
[17] Kleckner IR, Foster MP. An introduction to NMR-based approaches for measuring protein dynamics. Biochim. Biophys. Acta. 2011;1814:942–968.
[18] Carr HY, Purcell EM. Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys. Rev. 1954;94:630–638.
[19] Meiboom S, Gill D. Modified spin-echo method for measuring nuclear relaxation times. Rev. Sci. Instrum. 1958;29:688–691.
[20] Deverell C, Morgan RE, Strange JH. Studies of chemical exchange by nuclear magnetic relaxation in the rotating frame. Mol. Phys. 1970;18:553–559.
[21] Saitô H, Tuzi S, Tanio M, Naito A. Dynamic aspect of membrane proteins and membrane associated peptides as revealed by 13C NMR: lessons from bacteriorhodopsin as an intact protein. Annu. Rep. NMR Spectrosc. 2002;47:39–108.
[22] Saitô H, Mikami J, Yamaguchi S, Tanio M, Kira A, Arakawa T, Yamamoto K, Tuzi S. Site-directed 13C solid-state NMR studies on membrane proteins: strategy and goals toward revealing conformation and dynamics as illustrated for 13C-labeled bacteriorhodopsin. Magn. Reson. Chem. 2004;42:218–230.
[23] Saitô H. Site-directed solid-state NMR on membrane proteins. Annu. Rep. NMR Spectrosc. 2006;57:100–171.
[24] Saitô H, Ando I, Naito A. Solid State NMR Spectroscopy for Biopolymers, Principles and Applications. Berlin: Springer; 2006.
[25] Sarkar SK, Sullivan CE, Torchia DA. Solid state 13C NMR study of collagen molecular dynamics in hard and soft tissues. J. Biol. Chem. 1983;258:9762–9767.
[26] Jelinski LW, Sullivan CE, Torchia DA. 2H NMR study of molecular motion in collagen fibrils. Nature. 1980;284:531–534.
[27] Suwelack D, Rothwell WP, Waugh JS. Slow molecular motion detected in the NMR spectra of rotating solids. J. Chem. Phys. 1980;73:2559–2569.
[28] Rothwell WP, Waugh JS. Transverse relaxation of dipolar coupled spin systems under rf irradiation: detecting motions in solids. J. Chem. Phys. 1981;74:2721–2732.
[29] Naito A, Fukutani A, Uitdehaag M, Tuzi S, Saitô H. Backbone dynamics of polycrystalline peptides studied by measurements of 15N NMR lineshapes and 13C transverse relaxation times. J. Mol. Struct. 1998;441:231–241.
[30] Palmer III AG. Dynamic properties of proteins from NMR spectroscopy. Curr. Opin. Biotechnol. 1993;4:385–391.
[30a] Palmer III AG. NMR characterization of the dynamics of biomacromolecules. Chem. Rev. 2004;104:3623–3640.
[31] Jarymowycz VA, Stone MJ. Fast time scale dynamics of protein backbones: NMR relaxation methods, applications, and functional consequences. Chem. Rev. 2006;106:1624–1671.
[32] Igumenova TI, Frederick KK, Wand AJ. Characterization of the fast dynamics of protein amino acid side chains using NMR relaxation in solution. Chem. Rev. 2006;106:1672–1699.
[32a] Kleckner IR, Foster MP. An introduction to NMR-based approaches for measuring protein dynamics. Biochim. Biophys. Acta. 2011;1814:942–968.
[33] Daragan VA, Mayo KH. Motional model analyses of protein and peptide dynamics using 13C and 15N NMR relaxation. Prog. Nucl. Magn. Reson. Spectrosc. 1997;31:63–105.
[34] Woessner DE. Spin relaxation processes in a two‐proton system undergoing anisotropic reorientation. J. Chem. Phys. 1962;36:1–4.
[35] Richarz R, Nagayama K, Wüthrich K. Carbon-13 nuclear magnetic resonance relaxation studies of internal mobility of the polypeptide chain in basic pancreatic trypsin inhibitor and a selectively reduced analog. Biochemistry. 1980;19:5189–5196.
[36] Peng JW, Wagner G. Mapping of spectral density functions using heteronuclear NMR relaxation measurements. J. Magn. Reson. 1992;98:308–332.
[37] Peng JW, Wagner G. Mapping of the spectral densities of nitrogen-hydrogen bond motions in eglin c using heteronuclear relaxation experiments. Biochemistry. 1992;31:8571–8586.
[38] Kay LE, Torchia DA, Bax A. Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR Spectroscopy: application to staphylococcal nuclease. Biochemistry. 1989;28:8972–8979.
[39] Palmer III AG, Rance M, Wright PE. Intramolecular motions of a zinc finger DNA-binding domain from Xfin characterized by proton-detected natural abundance 13C heteronuclear NMR spectroscopy. J. Am. Chem. Soc. 1991;113:4371–4380.
[40] Akke M, Skelton NJ, Kördel J, Palmer III AG, Chazin WJ. Effects of ion binding on the backbone dynamics of calbindin D9k determined by 15N NMR relaxation. Biochemistry. 1993;32:9832–9844.
[41] Mandel AM, Akke M, Palmer III AG. Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme. J. Mol. Biol. 1995;246:144–163.
[42] Pang Y, Buck M, Zuiderweg ER. Backbone dynamics of the ribonuclease binase active site area using multinuclear (15N and 13CO) NMR relaxation and computational molecular dynamics. Biochemistry. 2002;41:2655–2666.
[43] Muhandiram DR, Yamazaki T, Sykes BD, Kay LE. Measurement of 2H T1 and T1ρ relaxation times in uniformly 13C-labeled and fractionally 2H-labeled proteins in solution. J. Am. Chem. Soc. 1995;117:11536–11544.
[44] Kay LE, Muhandiram DR, Farrow NA, Aubin Y, Forman-Kay JD. Correlation between dynamics and high affinity binding in an SH2 domain interaction. Biochemistry. 1996;35:361–368.
[45] Akke M, Brüschweiler R, Palmer III AG. NMR order parameters and free energy: an analytical approach and its application to cooperative calcium(2 +) binding by calbindin D9k. J. Am. Chem. Soc. 1993;115:9832–9833.
[46] Yang D, Kay LE. Contributions to conformational entropy arising from bond vector fluctuations measured from NMR-derived order parameters: application to protein folding. J. Mol. Biol. 1996;263:369–382.
[47] Li Z, Raychaudhuri S, Wand AJ. Insights into local residual entropy of proteins provided by NMR relaxlation. Protein Sci. 1996;5:2647–2650.
[48] Spyracopoulos L, Sykes BD. Thermodynamic insights into proteins from NMR spin relaxation studies. Curr. Opin. Struct. Biol. 2001;11:555–559.
[49] Tuzi S, Naito A, Saitô H. 13C NMR study on conformation and dynamics of the transmembrane...
Dateiformat: ePUBKopierschutz: Adobe-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet – also für „fließenden” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!
Weitere Informationen finden Sie in unserer E-Book Hilfe.
Dateiformat: PDFKopierschutz: Adobe-DRM (Digital Rights Management)
Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.
Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!
Dateiformat: ePUBKopierschutz: Wasserzeichen-DRM (Digital Rights Management)
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet - also für „fließenden” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Wasserzeichen-DRM wird hier ein „weicher” Kopierschutz verwendet. Daher ist technisch zwar alles möglich – sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.