Provides students and practitioners with a comprehensive understanding of the theory of spectroscopy and the design and use of spectrophotometers
In this book, you will learn the fundamental principles underpinning molecular spectroscopy and the connections between those principles and the design of spectrophotometers.
Spectroscopy, along with chromatography, mass spectrometry, and electrochemistry, is an important and widely-used analytical technique. Applications of spectroscopy include air quality monitoring, compound identification, and the analysis of paintings and culturally important artifacts. This book introduces students to the fundamentals of molecular spectroscopy - including UV-visible, infrared, fluorescence, and Raman spectroscopy - in an approachable and comprehensive way. It goes beyond the basics of the subject and provides a detailed look at the interplay between theory and practice, making it ideal for courses in quantitative analysis, instrumental analysis, and biochemistry, as well as courses focused solely on spectroscopy. It is also a valuable resource for practitioners working in laboratories who regularly perform spectroscopic analyses.
Spectroscopy: Principles and Instrumentation:
* Provides extensive coverage of principles, instrumentation, and applications of molecular spectroscopy
* Facilitates a modular approach to teaching and learning about chemical instrumentation
* Helps students visualize the effects that electromagnetic radiation in different regions of the spectrum has on matter
* Connects the fundamental theory of the effects of electromagnetic radiation on matter to the design and use of spectrophotometers
* Features numerous figures and diagrams to facilitate learning
* Includes several worked examples and companion exercises throughout each chapter so that readers can check their understanding
* Offers numerous problems at the end of each chapter to allow readers to apply what they have learned
* Includes case studies that illustrate how spectroscopy is used in practice, including analyzing works of art, studying the kinetics of enzymatic reactions, detecting explosives, and determining the DNA sequence of the human genome
* Complements Chromatography: Principles and Instrumentation
The book is divided into five chapters that cover the Fundamentals of Spectroscopy, UV-visible Spectroscopy, Fluorescence/Luminescence Spectroscopy, Infrared Spectroscopy, and Raman Spectroscopy. Each chapter details the theory upon which the specific techniques are based, provides ways for readers to visualize the molecular-level effects of electromagnetic radiation on matter, describes the design and components of spectrophotometers, discusses applications of each type of spectroscopy, and includes case studies that illustrate specific applications of spectroscopy.
Each chapter is divided into multiple sections using headings and subheadings, making it easy for readers to work through the book and to find specific information relevant to their interests. Numerous figures, exercises, worked examples, and end-of-chapter problems reinforce important concepts and facilitate learning.
Spectroscopy: Principles and Instrumentation is an excellent text that prepares undergraduate students and practitioners to operate in modern laboratories.
Auflage
Sprache
Dateigröße
ISBN-13
978-1-119-43663-8 (9781119436638)
Schweitzer Klassifikation
1 - Title Page [Seite 5]
2 - Copyright Page [Seite 6]
3 - Contents [Seite 7]
4 - About the Cover [Seite 11]
5 - Preface [Seite 13]
6 - Chapter 1 Fundamentals of Spectroscopy [Seite 17]
6.1 - 1.1. Properties of Electromagnetic Radiation [Seite 17]
6.1.1 - 1.1.1. Speed, c [Seite 18]
6.1.2 - 1.1.2. Amplitude, A [Seite 18]
6.1.3 - 1.1.3. Frequency, ? [Seite 19]
6.1.4 - 1.1.4. Wavelength, ? [Seite 19]
6.1.5 - 1.1.5. Energy, E [Seite 19]
6.1.6 - 1.1.6. Wavenumber, ? [Seite 22]
6.2 - 1.2. The Electromagnetic Spectrum [Seite 23]
6.2.1 - 1.2.1. Radio-Frequency Radiation (10?27 to 10?21 J/photon) [Seite 24]
6.2.2 - 1.2.2. Microwave Radiation (10?23 to 10?22 J/photon) [Seite 26]
6.2.3 - 1.2.3. Infrared Radiation (10?22 to 10?19 J/photon) [Seite 27]
6.2.4 - 1.2.4. Ultraviolet and Visible Radiation (10?19 to 10?18 J/photon) [Seite 28]
6.2.5 - 1.2.5. X-Ray Radiation (10?15 to 10?13 J/photon) [Seite 29]
6.2.6 - 1.2.6. Alpha, Beta, and Gamma Radiation (10?13 to 10?11 J/photon and Higher) [Seite 29]
6.3 - 1.3. The Perrin-Jablonski Diagram [Seite 31]
6.3.1 - 1.3.1. Timescales of Events [Seite 34]
6.3.2 - 1.3.2. Summary of Radiative and Nonradiative Processes [Seite 35]
6.4 - 1.4. Temperature Effects on Ground and Excited State Populations [Seite 35]
6.5 - 1.5. More Wave Characteristics [Seite 37]
6.5.1 - 1.5.1. Adding Waves Together [Seite 37]
6.5.2 - 1.5.2. Diffraction [Seite 37]
6.5.3 - 1.5.3. Reflection [Seite 41]
6.5.4 - 1.5.4. Refraction [Seite 44]
6.5.5 - 1.5.5. Scattering [Seite 45]
6.5.6 - 1.5.6. Polarized Radiation [Seite 47]
6.6 - 1.6. Spectroscopy Applications [Seite 50]
6.7 - 1.7. Summary [Seite 50]
6.8 - Problems [Seite 50]
6.9 - References [Seite 52]
6.10 - Further Reading [Seite 54]
7 - Chapter 2 UV?Visible Spectrophotometry [Seite 55]
7.1 - 2.1. Theory [Seite 56]
7.1.1 - 2.1.1. The Absorption Process [Seite 56]
7.1.2 - 2.1.2. The Beer-Lambert Law [Seite 59]
7.1.3 - 2.1.3. Solvent Effects on Molar Absorptivity and Spectra [Seite 65]
7.2 - 2.2. UV?Visible Instrumentation [Seite 68]
7.2.1 - 2.2.1. Sources of Visible and Ultraviolet Light [Seite 70]
7.2.2 - 2.2.2. Wavelength Selection: Filters [Seite 74]
7.2.3 - 2.2.3. Wavelength Selection: Monochromators [Seite 77]
7.2.4 - 2.2.4. Monochromator Designs: Putting It All Together [Seite 91]
7.2.5 - 2.2.5. Detectors [Seite 95]
7.3 - 2.3. Spectrophotometer Designs [Seite 101]
7.3.1 - 2.3.1. Single-Beam Spectrophotometers [Seite 101]
7.3.2 - 2.3.2. Scanning Double-Beam Instruments [Seite 105]
7.3.3 - 2.3.3. Photodiode Array Instruments [Seite 109]
7.4 - 2.4. The Practice of Spectrophotometry [Seite 114]
7.4.1 - 2.4.1. Types of Samples That Can Be Analyzed [Seite 115]
7.4.2 - 2.4.2. Preparation of Calibration Curves [Seite 116]
7.4.3 - 2.4.3. Deviations from Beer's Law [Seite 119]
7.4.4 - 2.4.4. Precision: Relative Concentration Error [Seite 127]
7.4.5 - 2.4.5. The Desirable Absorbance Range [Seite 130]
7.5 - 2.5. Applications and Techniques [Seite 132]
7.5.1 - 2.5.1. Simultaneous Determinations of Multicomponent Systems [Seite 132]
7.5.2 - 2.5.2. Difference Spectroscopy [Seite 133]
7.5.3 - 2.5.3. Derivative Spectroscopy [Seite 134]
7.5.4 - 2.5.4. Titration Curves [Seite 135]
7.5.5 - 2.5.5. Turbidimetry and Nephelometry [Seite 137]
7.6 - 2.6. A Specific Application of UV?Visible Spectroscopy: Enzyme Kinetics [Seite 138]
7.6.1 - 2.6.1. Myeloperoxidase, Immune Responses, Heart Attacks, and Enzyme Kinetics [Seite 138]
7.6.2 - 2.6.2. Possible Mechanism for Myeloperoxidase Oxidation of LDL via Tyrosyl Radical Intermediates [Seite 139]
7.7 - 2.7. Summary [Seite 143]
7.8 - Problems [Seite 143]
7.9 - References [Seite 148]
7.10 - Further Reading [Seite 150]
8 - Chapter 3 Molecular Luminescence: Fluorescence, Phosphorescence, and Chemiluminescence [Seite 151]
8.1 - 3.1. Theory [Seite 151]
8.1.1 - 3.1.1. Absorbance Compared to Fluorescence [Seite 152]
8.1.2 - 3.1.2. Factors That Affect Fluorescence Intensity [Seite 157]
8.1.3 - 3.1.3. Quenching [Seite 162]
8.1.4 - 3.1.4. Quantum Yield and Fluorescence Intensity [Seite 163]
8.1.5 - 3.1.5. Linearity and Nonlinearity of Fluorescence: Quenching and Self-Absorption [Seite 165]
8.2 - 3.2. Instrumentation [Seite 169]
8.2.1 - 3.2.1. Instrument Design [Seite 170]
8.2.2 - 3.2.2. Sources [Seite 170]
8.2.3 - 3.2.3. Filters and Monochromators [Seite 173]
8.2.4 - 3.2.4. Component Arrangement [Seite 174]
8.2.5 - 3.2.5. Fluorometers [Seite 174]
8.2.6 - 3.2.6. Spectrofluorometers [Seite 175]
8.2.7 - 3.2.7. Cells and Slit Widths [Seite 180]
8.2.8 - 3.2.8. Detectors [Seite 182]
8.3 - 3.3. Practice of Luminescence Spectroscopy [Seite 183]
8.3.1 - 3.3.1. Considerations and Options [Seite 183]
8.3.2 - 3.3.2. Fluorescence Polarization [Seite 184]
8.3.3 - 3.3.3. Time?Resolved Fluorescence Spectroscopy [Seite 188]
8.4 - 3.4. Fluorescence Microscopy [Seite 189]
8.4.1 - 3.4.1. Fluorescence Microscopy Resolution [Seite 191]
8.4.2 - 3.4.2. Confocal Fluorescence Microscopy [Seite 191]
8.5 - 3.5. Phosphorescence and Chemiluminescence [Seite 193]
8.5.1 - 3.5.1. Phosphorescence [Seite 193]
8.5.2 - 3.5.2. Chemiluminescence [Seite 193]
8.6 - 3.6. Applications of Fluorescence: Biological Systems and DNA Sequencing [Seite 195]
8.7 - 3.7. Summary [Seite 202]
8.8 - Problems [Seite 202]
8.9 - References [Seite 206]
8.10 - Further Reading [Seite 208]
9 - Chapter 4 Infrared Spectroscopy [Seite 209]
9.1 - 4.1. Theory [Seite 209]
9.1.1 - 4.1.1. Bond Vibrations [Seite 212]
9.1.2 - 4.1.2. Other Types of Vibrations [Seite 214]
9.1.3 - 4.1.3. Modeling Vibrations: Harmonic and Nonharmonic Oscillators [Seite 216]
9.1.4 - 4.1.4. The 3N?6 Rule [Seite 223]
9.2 - 4.2. FTIR Instruments [Seite 225]
9.2.1 - 4.2.1. The Michelson Interferometer and Fourier Transform [Seite 226]
9.2.2 - 4.2.2. Components of FTIR Instruments: Sources [Seite 240]
9.2.3 - 4.2.3. Components of FTIR Instruments: DTGS and MCT Detectors [Seite 242]
9.2.4 - 4.2.4. Sample Handling [Seite 243]
9.2.5 - 4.2.5. Reflectance Techniques [Seite 247]
9.3 - 4.3. Applications of IR Spectroscopy, Including Near?IR and Far?IR [Seite 250]
9.3.1 - 4.3.1. Structure Determination with Mid-IR Spectroscopy [Seite 251]
9.3.2 - 4.3.2. Gas Analysis [Seite 251]
9.3.3 - 4.3.3. Near-Infrared Spectroscopy (NIR) [Seite 252]
9.3.4 - 4.3.4 Far-Infrared Spectroscopy (FIR) [Seite 261]
9.4 - 4.4. Summary [Seite 264]
9.5 - Problems [Seite 264]
9.6 - References [Seite 267]
9.7 - Further Reading [Seite 270]
10 - Chapter 5 Raman Spectroscopy [Seite 271]
10.1 - 5.1. Energy-Level Description [Seite 271]
10.2 - 5.2. Visualization of Raman Data [Seite 274]
10.3 - 5.3. Molecular Polarizability [Seite 275]
10.4 - 5.4. Brief Review of Molecular Vibrations [Seite 277]
10.5 - 5.5. Classical Theory of Raman Scattering [Seite 278]
10.6 - 5.6. Polarization of Raman Scattering [Seite 281]
10.6.1 - 5.6.1. Depolarization Ratio [Seite 282]
10.7 - 5.7. Instrumentation and Analysis Methods [Seite 282]
10.7.1 - 5.7.1. Filter Instruments [Seite 283]
10.7.2 - 5.7.2. Dispersive Spectrometers [Seite 286]
10.7.3 - 5.7.3. Fourier Transform Raman Spectrometers [Seite 287]
10.7.4 - 5.7.4. Confocal Raman Instruments [Seite 287]
10.7.5 - 5.7.5. Light Sources [Seite 289]
10.8 - 5.8. Quantitative Analysis Methods [Seite 290]
10.8.1 - 5.8.1. Calibration Curves [Seite 290]
10.8.2 - 5.8.2. Curve Fitting [Seite 290]
10.8.3 - 5.8.3. Ordinary Least Squares [Seite 291]
10.8.4 - 5.8.4. Classical Least Squares [Seite 293]
10.8.5 - 5.8.5. Implicit Analytical Methods [Seite 293]
10.9 - 5.9. Applications [Seite 293]
10.9.1 - 5.9.1. Art and Archeology [Seite 293]
10.9.2 - 5.9.2. Pharmaceuticals [Seite 294]
10.9.3 - 5.9.3. Forensics [Seite 295]
10.9.4 - 5.9.4. Medicine and Biology [Seite 295]
10.10 - 5.10. Signal Enhancement Techniques [Seite 298]
10.10.1 - 5.10.1. Resonance Raman Spectroscopy [Seite 299]
10.10.2 - 5.10.2. Surface-Enhanced Raman Spectroscopy [Seite 299]
10.10.3 - 5.10.3. Nonlinear Raman Spectroscopy [Seite 300]
10.11 - 5.11. Summary [Seite 302]
10.12 - Problems [Seite 302]
10.13 - References [Seite 304]
10.14 - Further Reading [Seite 305]
11 - Solutions [Seite 307]
12 - Index [Seite 331]
13 - EULA [Seite 339]