Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
Seit ihrer Einführung im Jahr 2017 haben sich Transformer-Modelle zum De-facto-Standard für die Bewältigung einer Vielzahl von Aufgaben im Bereich der natürlichen Sprachverarbeitung (engl. Natural Language Processing, NLP) sowohl in der Wissenschaft als auch in der Industrie entwickelt. Ohne dass Sie es bemerkt haben, haben Sie heute wahrscheinlich bereits mit einem Transformer interagiert: Google verwendet heutzutage das BERT-Modell, um die Suchanfragen der Nutzer besser zu verstehen und so die Suchmaschine zu verbessern. Auch die Modelle der GPT-Familie von OpenAI haben in den Mainstream-Medien wiederholt für Schlagzeilen gesorgt, weil sie in der Lage sind, wie von Menschen hervorgebrachte Texte und Bilder zu generieren.1 Mithilfe dieser Transformer-basierten Modelle werden Anwendungen wie GitHub's Copilot (https://copilot.github.com) betrieben, die, wie in Abbildung 1-1 gezeigt, einen bloßen Kommentar in Quellcode umwandeln können, mit dem automatisch ein neuronales Netz (engl. Neural Network) für Sie erstellt wird!
Weshalb also haben Transformer das Gebiet fast über Nacht verändert? Wie bei vielen großen wissenschaftlichen Durchbrüchen handelte es sich um die Synthese mehrerer Ideen, wie Attention, Transfer Learning und der Skalierung neuronaler Netze, die zu dieser Zeit in der Forschungsgemeinschaft kursierten.
Aber wie nützlich sie auch sein mögen - um in der Industrie Fuß zu fassen, braucht jede ausgefallene neue Methode Werkzeuge, die sie zugänglich machen. Die 2 Transformers-Bibliothek (https://oreil.ly/Z79jF) und das sie umgebende Ökosystem sind genau darauf ausgerichtet und erleichtern Praktikern, Modelle zu verwenden, zu trainieren und sie mit anderen zu teilen. Dies hat die Verbreitung von Transformer-Modellen stark begünstigt, und die Bibliothek wird heute von über fünftausend Unternehmen und Einrichtungen genutzt. In diesem Buch zeigen wir Ihnen, wie Sie diese Modelle für praktische Anwendungen trainieren und optimieren können.
1 # Create a convolutional neural network to classify MNIST images in PyTorch.
def __init__(self):
super(ConvNet, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
Abbildung 1-1: Ein Beispiel für GitHub's Copilot-System, das infolge einer kurzen Beschreibung der Aufgabe einen Vorschlag für die gesamte Klasse liefert (alles, was auf class folgt, wurde automatisch generiert)
Dieses Buch richtet sich an Data Scientists und Machine Learning Engineers, die vielleicht schon von den jüngsten Durchbrüchen mit Transformern gehört haben, denen aber ein detaillierter Leitfaden fehlt, um diese Modelle an ihre eigenen Anwendungsfälle anzupassen. Das Buch ist nicht als Einführung in das Machine Learning zu verstehen. Wir gehen davon aus, dass Sie mit der Programmierung in Python vertraut sind und ein grundlegendes Verständnis von Deep-Learning-Frameworks wie PyTorch (https://pytorch.org) oder TensorFlow (https://www.tensorflow.org) haben. Wir gehen auch davon aus, dass Sie einige praktische Erfahrungen mit dem Trainieren von Modellen auf GPUs besitzen. Obwohl sich das Buch auf die PyTorch-API der Transformers-Bibliothek konzentriert, zeigen wir Ihnen in Kapitel 2, wie Sie alle Beispiele in TensorFlow überführen können.
Die folgenden Ressourcen bieten Ihnen eine gute Grundlage für die in diesem Buch behandelten Themen. Wir gehen davon aus, dass Ihr Kenntnisstand in etwa auf deren Niveau liegt:
Das Ziel dieses Buchs ist es, Sie in die Lage zu versetzen, Ihre eigenen Sprachanwendungen zu erstellen. Zu diesem Zweck konzentriert es sich auf praktische Anwendungsfälle und geht nur dort auf die theoretischen Aspekte ein, wo es notwendig ist. Der Ansatz des Buchs ist praxisorientiert, und wir empfehlen Ihnen dringend, die Codebeispiele selbst auszuprobieren.
Das Buch deckt alle wichtigen Anwendungen von Transformern im NLP ab, wobei jedes Kapitel (mit wenigen Ausnahmen) einer bestimmten Aufgabenstellung, verbunden mit einem realistischen Anwendungsfall und Datensatz, gewidmet ist. In jedem Kapitel werden außerdem einige zusätzliche Konzepte vorgestellt. Hier ist ein Überblick über die behandelten Aufgabenstellungen (engl. Tasks) und Themen:
Die Transformers-Bibliothek bietet mehrere Abstraktionsebenen für die Verwendung und das Training von Transformer-Modellen. Wir beginnen mit den benutzerfreundlichen Pipelines, die es uns ermöglichen, Textbeispiele durch die Modelle zu leiten und die Vorhersagen mit nur wenigen Codezeilen zu ermitteln. Anschließend befassen wir uns mit Tokenizern, Modellklassen und der...
Dateiformat: ePUBKopierschutz: Wasserzeichen-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet - also für „fließenden” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Wasserzeichen-DRM wird hier ein „weicher” Kopierschutz verwendet. Daher ist technisch zwar alles möglich – sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.
Weitere Informationen finden Sie in unserer E-Book Hilfe.