1 - Cover [Seite 1]
2 - Title Page [Seite 5]
3 - Copyright Page [Seite 6]
4 - Dedication [Seite 7]
5 - Contents [Seite 9]
6 - Preface [Seite 23]
7 - 1 Structural and Biodegradation Characterization of Supramolecular PCL/HAp Nanocomposites for Application in Tissue Engineering [Seite 25]
7.1 - 1.1 Introduction [Seite 25]
7.1.1 - 1.1.1 Hydroxyapatite: A Bioceramic of Renewable Resource [Seite 25]
7.2 - 1.2 Biomedical Applications of HAp [Seite 26]
7.3 - 1.3 Effect of HAp Particles on Biodegradation of PCL/HAp Composites [Seite 29]
7.4 - 1.4 Polycaprolactone [Seite 30]
7.5 - 1.5 Supramolecular Polymers and Supramolecular PCL [Seite 31]
7.6 - 1.6 Supramolecular Composites: PCL (UPy)2/HApUPy Composites [Seite 32]
7.6.1 - 1.6.1 Biodegradation Study of the PCL (UPy)2/HApUPy Composites [Seite 34]
7.6.1.1 - 1.6.1.1 In Vitro Degradation Study [Seite 34]
7.6.1.2 - 1.6.1.2 Water Uptake and Weight Loss [Seite 34]
7.6.1.3 - 1.6.1.3 Chemical Properties [Seite 35]
7.6.1.4 - 1.6.1.4 Thermal and Dynamic Mechanical Properties [Seite 35]
7.7 - 1.7 PCL(UPy)2/HApUPy Nanocomposites [Seite 41]
7.7.1 - 1.7.1 Biodegradation Study of PCL(UPy)2/HApUPy Nanocomposites [Seite 42]
7.8 - References [Seite 44]
8 - 2 Different Characterization of Solid Biofillers Based Agricultural Waste Materials [Seite 49]
8.1 - 2.1 Introduction [Seite 49]
8.2 - 2.2 Examples on Agricultural Waste Materials [Seite 50]
8.2.1 - 2.2.1 Rice Husk [Seite 50]
8.2.2 - 2.2.2 Olive Husk Powder [Seite 51]
8.2.3 - 2.2.3 Cellulose [Seite 54]
8.3 - 2.3 The Main Polymorphs of Cellulose [Seite 54]
8.4 - 2.4 Modification Methods of Agro-Biomass [Seite 55]
8.4.1 - 2.4.1 Physical Methods [Seite 55]
8.4.1.1 - 2.4.1.1 Conventional Drying Methods [Seite 55]
8.4.1.2 - 2.4.1.2 Microwave Heating [Seite 56]
8.4.2 - 2.4.2 Chemical Methods [Seite 56]
8.4.3 - 2.4.3 Cross-linking of the Cellulose Macromolecules [Seite 57]
8.4.3.1 - 2.4.3.1 Reaction with Formaldehyde [Seite 57]
8.4.3.2 - 2.4.3.2 Acetylation [Seite 57]
8.4.3.3 - 2.4.3.3 Polyisocyanates Coupling Agents [Seite 57]
8.4.3.4 - 2.4.3.4 Silane Coupling Agents [Seite 58]
8.5 - 2.5 Properties of Thermoplastics Reinforced with Untreated Wood Fillers [Seite 58]
8.6 - 2.6 Production of Nanocellulose [Seite 58]
8.6.1 - 2.6.1 Cellulose Whiskers [Seite 58]
8.6.2 - 2.6.2 Microfibrillated Cellulose [Seite 59]
8.6.3 - 2.6.3 Properties of Cellulose-Based Nanocomposites [Seite 60]
8.6.3.1 - 2.6.3.1 Mechanical Properties [Seite 60]
8.6.3.2 - 2.6.3.2 Thermal Properties [Seite 60]
8.6.3.3 - 2.6.3.3 Barrier Properties [Seite 61]
8.7 - 2.7 Processing of Wood Thermoplastic Composites [Seite 61]
8.8 - 2.8 Conclusion [Seite 62]
8.9 - References [Seite 62]
9 - 3 Poly (ethylene-terephthalate) Reinforced with Hemp Fibers: Elaboration, Characterization, and Potential Applications [Seite 67]
9.1 - 3.1 General Introduction to Biocomposite Materials [Seite 67]
9.2 - 3.2 PET-Hemp Fiber Composites [Seite 69]
9.2.1 - 3.2.1 Potential [Seite 69]
9.2.2 - 3.2.2 Challenges [Seite 71]
9.3 - 3.3 Methods of Elaboration and Characterization of PET-Hemp Fiber Composites [Seite 72]
9.3.1 - 3.3.1 Elaboration [Seite 72]
9.3.2 - 3.3.2 Melt Processing [Seite 73]
9.3.3 - 3.3.3 Characterization [Seite 74]
9.4 - 3.4 Properties of PET-Hemp Fiber Composites [Seite 74]
9.4.1 - 3.4.1 Mechanical Properties [Seite 74]
9.4.2 - 3.4.2 Thermostability [Seite 75]
9.4.3 - 3.4.3 Structural Properties [Seite 77]
9.4.4 - 3.4.4 Heat Capacities [Seite 78]
9.4.5 - 3.4.5 Relaxation Properties [Seite 79]
9.5 - 3.5 Applications of PET-Hemp Fiber Composites [Seite 81]
9.5.1 - 3.5.1 Applications Requiring Small Deformations [Seite 81]
9.5.2 - 3.5.2 Applications Requiring Large Deformations [Seite 81]
9.5.2.1 - 3.5.2.1 The Constitutive Equations [Seite 82]
9.5.2.2 - 3.5.2.2 The Free-forming Pressure Load [Seite 82]
9.5.2.3 - 3.5.2.3 The Simulation Assumptions [Seite 83]
9.5.2.4 - 3.5.2.4 The Numerical Free Inflation of PET-Hemp Fibers Composite Discs [Seite 85]
9.6 - 3.6 Conclusion and Future Prospects [Seite 88]
9.7 - References [Seite 88]
10 - 4 Poly(Lactic Acid) Thermoplastic Composites from Renewable Materials [Seite 93]
10.1 - 4.1 Introduction [Seite 93]
10.2 - 4.2 Poly(Lactic Acid) Production, Properties, and Processing [Seite 95]
10.2.1 - 4.2.1 Lactide [Seite 95]
10.2.2 - 4.2.2 PLA Polymerization [Seite 96]
10.2.3 - 4.2.3 PLA Properties and Processing [Seite 97]
10.3 - 4.3 Poly(Lactic Acid) Nanocomposites [Seite 98]
10.3.1 - 4.3.1 General Modifications [Seite 98]
10.3.2 - 4.3.2 Degradability [Seite 99]
10.3.3 - 4.3.3 Melt Rheology [Seite 102]
10.4 - 4.4 Poly(Lactic Acid) Natural Fibers-Reinforced Composites [Seite 103]
10.4.1 - 4.4.1 PLA/Kenaf-Reinforced Composites [Seite 103]
10.4.2 - 4.4.2 PLA/Flax-Reinforced Composites [Seite 106]
10.4.3 - 4.4.3 PLA/Jute-Reinforced Composites [Seite 107]
10.4.4 - 4.4.4 PLA/Hemp-Reinforced Composites [Seite 109]
10.4.5 - 4.4.5 PLA/Sisal-Reinforced Composites [Seite 110]
10.4.6 - 4.4.6 PLA/Wood Fiber-Reinforced Composites [Seite 112]
10.4.7 - 4.4.7 Other Natural Fibers/PLA-Reinforced Composites [Seite 113]
10.4.8 - 4.4.8 Recycling of Biocomposites [Seite 115]
10.5 - 4.5 Conclusions [Seite 117]
10.6 - References [Seite 117]
11 - 5 Chitosan-Based Composite Materials: Fabrication and Characterization [Seite 127]
11.1 - 5.1 Introduction [Seite 127]
11.2 - 5.2 Cs-Based Composite Materials [Seite 129]
11.3 - 5.3 Cs-Based Nanocomposites [Seite 129]
11.4 - 5.4 Characterization of Cs-Based Composites [Seite 154]
11.5 - 5.5 Environmental Concerns [Seite 154]
11.6 - 5.6 Future Prospects [Seite 154]
11.7 - References [Seite 157]
12 - 6 The Use of Flax Fiber-Reinforced Polymer (FFRP) Composites in the Externally Reinforced Structures for Seismic Retrofitting Monitored by Transient Thermography and Optical Techniques [Seite 161]
12.1 - 6.1 Introduction [Seite 161]
12.2 - 6.2 Experimental Setup [Seite 163]
12.2.1 - 6.2.1 Experimental Specimen with Artificial Defects [Seite 163]
12.2.2 - 6.2.2 Retrofitted Walls in the Faculty of Engineering, L'Aquila University [Seite 168]
12.2.3 - 6.2.3 Internal Wall Inspected by Square Pulse Thermography [Seite 170]
12.2.4 - 6.2.4 External Faculty Façade Solar Loading Thermography Inspection [Seite 172]
12.3 - 6.3 Conclusions [Seite 175]
12.4 - Acknowledgments [Seite 176]
12.5 - References [Seite 176]
13 - 7 Recycling and Reuse of Fiber Reinforced Polymer Wastes in Concrete Composite Materials [Seite 179]
13.1 - 7.1 Introduction [Seite 179]
13.2 - 7.2 Recycling Processes for Thermoset FRP Wastes [Seite 182]
13.2.1 - 7.2.1 Incineration and Co-incineration [Seite 182]
13.2.2 - 7.2.2 Thermal/Chemical Recycling [Seite 183]
13.2.2.1 - 7.2.2.1 Thermal Processes [Seite 183]
13.2.2.2 - 7.2.2.2 Chemical Processes [Seite 184]
13.2.3 - 7.2.3 Mechanical Recycling [Seite 185]
13.3 - 7.3 End-Use Applications for Mechanically Recycled FRP Wastes [Seite 188]
13.3.1 - 7.3.1 Concrete Materials Modified with FRP Recyclates [Seite 188]
13.4 - 7.4 Market Outlook and Future Perspectives [Seite 190]
13.5 - Acknowledgment [Seite 191]
13.6 - References [Seite 191]
14 - 8 Analysis of Damage in Hybrid Composites Subjected to Ballistic Impacts: An Integrated Non-Destructive Approach [Seite 199]
14.1 - 8.1 Introduction [Seite 200]
14.2 - 8.2 Lay-up Sequences and Manufacturing of Composite Materials [Seite 202]
14.3 - 8.3 Test Procedure [Seite 202]
14.4 - 8.4 Numerical Simulation [Seite 204]
14.4.1 - 8.4.1 Construction of the Models [Seite 207]
14.4.1.1 - 8.4.1.1 The Intercalated Case [Seite 209]
14.4.1.2 - 8.4.1.2 The Sandwich Case [Seite 211]
14.4.2 - 8.4.2 First Step of the Numerical Simulations [Seite 212]
14.4.2.1 - 8.4.2.1 Mesh [Seite 213]
14.4.3 - 8.4.3 Second Step of the Numerical Simulations [Seite 214]
14.5 - 8.5 Non-destructive Testing Methods and Related Techniques [Seite 215]
14.5.1 - 8.5.1 Near-infrared Reflectography (NIRR) Method [Seite 215]
14.5.2 - 8.5.2 Active Infrared Thermography (IRT) Method [Seite 216]
14.5.2.1 - 8.5.2.1 Principal Component Thermography (PCT) Technique [Seite 216]
14.5.2.2 - 8.5.2.2 Partial Least-Square Thermography (PLST) Technique [Seite 217]
14.6 - 8.6 Results and Discussion [Seite 218]
14.7 - 8.7 Conclusions [Seite 230]
14.8 - References [Seite 230]
15 - 9 Biofiber-Reinforced Acrylated Epoxidized Soybean Oil (AESO) Biocomposites [Seite 235]
15.1 - 9.1 Introduction [Seite 235]
15.2 - 9.2 Soybean Oil [Seite 237]
15.2.1 - 9.2.1 Epoxidized Soybean Oil [Seite 239]
15.2.2 - 9.2.2 Acrylated Epoxidized Soybean Oil [Seite 240]
15.3 - 9.3 Functionalization of Soy Oil Triglyceride [Seite 240]
15.3.1 - 9.3.1 Epoxidation [Seite 242]
15.3.2 - 9.3.2 Acrylation [Seite 243]
15.3.3 - 9.3.3 Green Chemistry in AESO Production [Seite 245]
15.3.4 - 9.3.4 Properties of AESO [Seite 245]
15.3.5 - 9.3.5 Modification of AESO [Seite 245]
15.3.6 - 9.3.6 Comonomers Used in Production of AESO Resins [Seite 248]
15.4 - 9.4 Manufacturing of AESO-Based Composites [Seite 251]
15.4.1 - 9.4.1 Components Used in Manufacturing of AESO-Based Composites [Seite 252]
15.4.1.1 - 9.4.1.1 Glass Fiber [Seite 252]
15.4.1.2 - 9.4.1.2 Natural Fibers [Seite 252]
15.4.2 - 9.4.2 Composite Production Methods [Seite 256]
15.4.3 - 9.4.3 Properties of Composites [Seite 257]
15.4.3.1 - 9.4.3.1 Vibration-Damping/Thermomechanical Properties [Seite 258]
15.4.3.2 - 9.4.3.2 Mechanical Properties of the Composites [Seite 262]
15.4.3.3 - 9.4.3.3 Flexural Properties [Seite 264]
15.4.3.4 - 9.4.3.4 Impact Properties [Seite 266]
15.4.3.5 - 9.4.3.5 Dielectric Properties [Seite 267]
15.4.3.6 - 9.4.3.6 Thermal Expansion [Seite 268]
15.4.3.7 - 9.4.3.7 Water Absorption of AESO Composites [Seite 269]
15.4.3.8 - 9.4.3.8 Climate Resistance [Seite 270]
15.4.3.9 - 9.4.3.9 AESO-Based Nanocomposites [Seite 271]
15.5 - 9.5 Targeted Applications [Seite 271]
15.6 - 9.6 Conclusion [Seite 271]
15.7 - Acknowledgments [Seite 272]
15.8 - References [Seite 272]
16 - 10 Biopolyamides and High-Performance Natural Fiber-Reinforced Biocomposites [Seite 277]
16.1 - 10.1 Introduction [Seite 277]
16.2 - 10.2 Polyamide Chemistry [Seite 280]
16.2.1 - 10.2.1 Bio-based Polyamide [Seite 280]
16.2.2 - 10.2.2 Properties of Polyamides [Seite 281]
16.2.3 - 10.2.3 Chemical Synthesis of Intermediates from Castor Beans [Seite 282]
16.2.3.1 - 10.2.3.1 Undecenoic Acid Pathway [Seite 283]
16.2.3.2 - 10.2.3.2 Sebacic Acid Pathway [Seite 284]
16.2.3.3 - 10.2.3.3 Decamethylene Diamine Pathway [Seite 284]
16.3 - 10.3 Overview of Current Applications of Polyamides [Seite 285]
16.4 - 10.4 Biopolyamide Reinforced with Natural Fibers [Seite 286]
16.5 - 10.5 Conclusion [Seite 292]
16.6 - References [Seite 292]
17 - 11 Impact of Recycling on the Mechanical and Thermo-Mechanical Properties of Wood Fiber Based HDPE and PLA Composites [Seite 295]
17.1 - 11.1 Introduction [Seite 295]
17.2 - 11.2 Experiments [Seite 299]
17.2.1 - 11.2.1 Materials [Seite 299]
17.2.2 - 11.2.2 Material Processing [Seite 300]
17.2.3 - 11.2.3 Experiment Design [Seite 301]
17.2.4 - 11.2.4 Test Methods [Seite 301]
17.2.4.1 - 11.2.4.1 Tensile Testing [Seite 301]
17.2.4.2 - 11.2.4.2 Flexural Testing [Seite 302]
17.2.4.3 - 11.2.4.3 Coefficient of Thermal Expansion (CTE) [Seite 302]
17.2.4.4 - 11.2.4.4 Heat Deflection Temperature (HDT) [Seite 302]
17.2.4.5 - 11.2.4.5 Dynamic Mechanical Analysis [Seite 302]
17.2.4.6 - 11.2.4.6 Izod Impact Test [Seite 302]
17.2.4.7 - 11.2.4.7 Melt Flow Index (MFI) [Seite 303]
17.2.4.8 - 11.2.4.8 Scanning Electron Microscopy [Seite 303]
17.2.4.9 - 11.2.4.9 Fiber Length Measurement [Seite 303]
17.3 - 11.3 Results and Discussion [Seite 303]
17.3.1 - 11.3.1 Effect of CA on the Mechanical and Thermo-Mechanical Properties [Seite 303]
17.3.2 - 11.3.2 Effect of Recycling on the Tensile Strength, and Flexural Strength [Seite 304]
17.3.3 - 11.3.3 Effect of Recycling on the HDT, Tensile Modulus, Flexural Modulus and Storage Modulus [Seite 306]
17.3.4 - 11.3.4 Effect of Recycling on the CTE and MFI [Seite 308]
17.3.5 - 11.3.5 Effect of Recycling on the Impact Resistance of Composites [Seite 309]
17.3.6 - 11.3.6 Scanning Electron Microscopy [Seite 310]
17.3.7 - 11.3.7 FTIR Analysis [Seite 311]
17.4 - 11.4 Conclusion [Seite 313]
17.5 - References [Seite 313]
18 - 12 Lignocellulosic Fibers Composites: An Overview [Seite 317]
18.1 - 12.1 Wood [Seite 317]
18.2 - 12.2 Conventional Wood-Based Composites [Seite 320]
18.3 - 12.3 Lignocellulosic Composites with Reduced Weight [Seite 323]
18.4 - 12.4 Regenerated Cellulose Fibers [Seite 325]
18.5 - 12.5 Composites with Natural Fibres [Seite 327]
18.6 - 12.6 Sisal [Seite 327]
18.7 - 12.7 Banana Fibers [Seite 328]
18.8 - 12.8 Lignin and Cellulose [Seite 329]
18.9 - 12.9 Nanocellulose [Seite 330]
18.10 - References [Seite 330]
19 - 13 Biodiesel-Derived Raw Glycerol to Value-Added Products: Catalytic Conversion Approach [Seite 333]
19.1 - 13.1 Introduction [Seite 333]
19.2 - 13.2 Glycerol [Seite 337]
19.2.1 - 13.2.1 Production of Glycerol [Seite 337]
19.2.2 - 13.2.2 Applications of Glycerol [Seite 340]
19.3 - 13.3 Catalytic Conversion of Glycerol to Value-added Products [Seite 340]
19.3.1 - 13.3.1 Catalytic Oxidation of Glycerol [Seite 342]
19.3.2 - 13.3.2 Catalytic Dehydration of Glycerol [Seite 348]
19.3.3 - 13.3.3 Catalytic Acetylation of Glycerol [Seite 352]
19.3.4 - 13.3.4 Catalytic Esterification of Glycerol [Seite 354]
19.3.5 - 13.3.5 Catalytic Reforming of Glycerol [Seite 357]
19.3.6 - 13.3.6 Catalytic Reduction of Glycerol [Seite 361]
19.3.7 - 13.3.7 Catalytic Etherification of Glycerol [Seite 363]
19.3.8 - 13.3.8 Catalytic Ammoxidation of Glycerol [Seite 365]
19.3.9 - 13.3.9 Catalytic Acetalization of Glycerol [Seite 366]
19.3.10 - 13.3.10 Enzymatic Conversion of Glycerol [Seite 368]
19.4 - 13.4 Conclusion [Seite 369]
19.5 - References [Seite 370]
20 - 14 Thermo-Mechanical Characterization of Sustainable Structural Composites [Seite 391]
20.1 - 14.1 Introduction [Seite 391]
20.2 - 14.2 Structure and Mechanical Properties of Botanical Fibers [Seite 392]
20.2.1 - 14.2.1 Structure, Morphology and Composition of Natural Fibers [Seite 393]
20.2.1.1 - 14.2.1.1 Structure and Morphology [Seite 393]
20.2.1.2 - 14.2.1.2 Chemical Constituents [Seite 394]
20.2.2 - 14.2.2 Physico-Mechanical Properties [Seite 394]
20.3 - 14.3 Sustainable Polymer Matrix [Seite 396]
20.3.1 - 14.3.1 Thermoplastic Biopolymers [Seite 396]
20.3.2 - 14.3.2 Synthesis, Morphology, Physical and Mechanical Properties of Poly-l-lactide [Seite 397]
20.3.2.1 - 14.3.2.1 Synthesis [Seite 397]
20.3.2.2 - 14.3.2.2 Morphology [Seite 398]
20.3.2.3 - 14.3.2.3 Physical and Mechanical Properties [Seite 399]
20.3.3 - 14.3.3 Biodegradation and Environmental Impact [Seite 400]
20.4 - 14.4 Interface in Natural Fiber-Sustainable Polymer Microcomposites [Seite 401]
20.4.1 - 14.4.1 Enhancement of Natural Fiber Adhesion to Polymer Matrix [Seite 401]
20.4.1.1 - 14.4.1.1 General Considerations and Fiber Treatment [Seite 401]
20.4.1.2 - 14.4.1.2 Mimicking Supramolecular Cell Wall Structures with Advanced Polymerization Methods [Seite 402]
20.4.2 - 14.4.2 Matrix Morphology Development in the Presence of Long-Fiber Reinforcement [Seite 403]
20.5 - 14.5 Natural Fibers as a Reinforcement in Unidirectional and Laminar Composites [Seite 405]
20.5.1 - 14.5.1 Theory of Fiber Reinforcement [Seite 406]
20.5.2 - 14.5.2 Manufacturing High-Fiber-Volume Fraction Composites [Seite 407]
20.6 - 14.6 Sustainable Structural Composites [Seite 408]
20.6.1 - 14.6.1 Selection of a Low Microfibril Angle Natural Fiber and a Sustainable Polymer Matrix [Seite 410]
20.6.1.1 - 14.6.1.1 Fiber Selection [Seite 410]
20.6.1.2 - 14.6.1.2 Polymer Matrix Selection [Seite 410]
20.6.2 - 14.6.2 Enhancing Mechanical Strength of Fibers with Chemical Treatment [Seite 411]
20.6.2.1 - 14.6.2.1 Modeling Statistical Variation of Single Fiber Bundle Failure [Seite 411]
20.6.2.2 - 14.6.2.2 Effect of Caustic Soda Treatment on Sisal Fiber Bundle Tensile Strength [Seite 414]
20.6.3 - 14.6.3 Adhesion Optimization and Polymer Morphology Development at Fiber-to-Matrix Interface [Seite 417]
20.6.3.1 - 14.6.3.1 Observation of Crystalline Morphology at Fiber-to-Matrix Interface [Seite 417]
20.6.3.2 - 14.6.3.2 Microbond Pullout Shear Test [Seite 421]
20.6.4 - 14.6.4 Processing and Thermo-Mechanical Characterization of Unidirectional Long-fiber-bundle Composites [Seite 422]
20.6.4.1 - 14.6.4.1 Compression Molding of Long-fiber-bundle Thermoplastic Composites [Seite 422]
20.6.4.2 - 14.6.4.2 Mechanical Properties of Long-fiber-bundle Composites [Seite 422]
20.6.4.3 - 14.6.4.3 Dynamic Mechanical Thermal Analysis of Long-fiber-bundle Composites [Seite 424]
20.7 - 14.7 Discussion and Conclusions [Seite 425]
20.8 - Acknowledgment [Seite 426]
20.9 - References [Seite 426]
21 - 15 Novel pH Sensitive Composite Hydrogel Based on Functionalized Starch/clay for the Controlled Release of Amoxicillin [Seite 433]
21.1 - 15.1 Introduction [Seite 433]
21.2 - 15.2 Experimental [Seite 436]
21.2.1 - 15.2.1 Materials [Seite 436]
21.2.2 - 15.2.2 Preparation of Composites of Cross-linked Carboxymethyl Starch and Montmorillonite (CL-CMS/MMT) [Seite 436]
21.2.2.1 - 15.2.2.1 Preparation of Carboxymethyl Starch (CMS) [Seite 436]
21.2.2.2 - 15.2.2.2 Preparation of Cross-linked Carboxymethyl Starch (CL-CMS) [Seite 437]
21.2.2.3 - 15.2.2.3 Preparation of Sodium Montmorillonite (Na-MMT) [Seite 437]
21.2.2.4 - 15.2.2.4 Preparation of Cross-linked CMS/MMT Hydrogel (CL-CMS/MMT) [Seite 437]
21.2.3 - 15.2.3 Characterization of the Drug Carrier [Seite 437]
21.2.4 - 15.2.4 Physio-Chemical Evaluation of CL-CMS [Seite 438]
21.2.5 - 15.2.5 Drug Encapsulation Experiments [Seite 438]
21.2.6 - 15.2.6 Swelling Studies [Seite 439]
21.2.7 - 15.2.7 In Vitro Drug Release [Seite 439]
21.2.8 - 15.2.8 Antimicrobial Activity [Seite 439]
21.3 - 15.3 Results and Discussion [Seite 440]
21.3.1 - 15.3.1 Characterization of CL-CMS/MMT Hydrogel [Seite 440]
21.3.2 - 15.3.2 Physico-Chemical Evaluation of Cross-linked Carboxymethyl Starch (CL-CMS) [Seite 441]
21.3.3 - 15.3.3 Effect of MMT Content on the Swelling Ratios of CL-CMS/MMT Composites [Seite 442]
21.3.4 - 15.3.4 Swelling Studies [Seite 443]
21.3.5 - 15.3.5 In Vitro Release Studies [Seite 443]
21.3.6 - 15.3.6 Release Mechanism Studies [Seite 444]
21.3.7 - 15.3.7 Antibacterial Studies [Seite 445]
21.4 - 15.4 Conclusions [Seite 445]
21.5 - Acknowledgments [Seite 446]
21.6 - References [Seite 446]
22 - 16 Preparation and Characterization of Biobased Thermoset Polymers from Renewable Resources and Their Use in Composites [Seite 449]
22.1 - 16.1 Introduction [Seite 449]
22.2 - 16.2 Characterization [Seite 451]
22.2.1 - 16.2.1 Physicochemical Characterization [Seite 451]
22.2.1.1 - 16.2.1.1 Chemical Composition [Seite 451]
22.2.1.2 - 16.2.1.2 Density and Morphology [Seite 454]
22.2.1.3 - 16.2.1.3 Viscosity [Seite 455]
22.2.1.4 - 16.2.1.4 Molecular Weight [Seite 457]
22.2.1.5 - 16.2.1.5 Melting Temperature [Seite 457]
22.2.1.6 - 16.2.1.6 Crystallinity and Morphology [Seite 458]
22.2.1.7 - 16.2.1.7 Wettability and Surface Tension [Seite 460]
22.2.1.8 - 16.2.1.8 Water Binding Capacity and Swelling [Seite 461]
22.2.1.9 - 16.2.1.9 Thermal Conductivity [Seite 462]
22.2.1.10 - 16.2.1.10 Thermal Stability [Seite 463]
22.2.1.11 - 16.2.1.11 Flammability [Seite 465]
22.2.2 - 16.2.2 Mechanical Characterization [Seite 466]
22.2.2.1 - 16.2.2.1 Tensile Properties [Seite 466]
22.2.2.2 - 16.2.2.2 Flexural Properties [Seite 468]
22.2.2.3 - 16.2.2.3 Impact Properties [Seite 468]
22.2.2.4 - 16.2.2.4 Compressive Properties [Seite 471]
22.2.2.5 - 16.2.2.5 Dynamic Mechanical Thermal Analysis [Seite 472]
22.2.2.6 - 16.2.2.6 Toughness and Hardness [Seite 473]
22.2.2.7 - 16.2.2.7 Creep and Fatigue [Seite 474]
22.2.2.8 - 16.2.2.8 Brittleness and Ductility [Seite 475]
22.3 - References [Seite 476]
23 - 17 Influence of Natural Fillers Size and Shape into Mechanical and Barrier Properties of Biocomposites [Seite 483]
23.1 - 17.1 Introduction [Seite 483]
23.2 - 17.2 Mechanical Properties of Biobased Composites [Seite 488]
23.2.1 - 17.2.1 Relevant Parameters in Fillers Reinforcement [Seite 490]
23.2.2 - 17.2.2 Stress Transfer and Percolation Mechanisms [Seite 491]
23.2.3 - 17.2.3 Common Fillers Coming from Natural Sources [Seite 494]
23.2.3.1 - 17.2.3.1 Microfillers [Seite 494]
23.2.3.2 - 17.2.3.2 Nanofillers [Seite 495]
23.2.4 - 17.2.4 Shape and Size of Natural Fillers [Seite 496]
23.2.5 - 17.2.5 Impact of Fillers Size and Volume Fraction [Seite 499]
23.2.5.1 - 17.2.5.1 Filler Size [Seite 499]
23.2.5.2 - 17.2.5.2 Filler Amount [Seite 501]
23.2.6 - 17.2.6 Processing [Seite 502]
23.2.6.1 - 17.2.6.1 Casting Evaporation [Seite 502]
23.2.6.2 - 17.2.6.2 Hot Processing [Seite 503]
23.3 - References [Seite 504]
24 - 18 Composite of Biodegradable Polymer Blends of PCL/PLLA and Coconut Fiber: The Effects of Ionizing Radiation [Seite 513]
24.1 - 18.1 Introduction [Seite 513]
24.2 - 18.2 Material and Method [Seite 518]
24.2.1 - 18.2.1 Coconut Fiber [Seite 518]
24.2.2 - 18.2.2 Preparation of Blend Sheets [Seite 519]
24.2.3 - 18.2.3 Preparation of Composite Pellets and Sheets [Seite 520]
24.2.4 - 18.2.4 Radiation Processing [Seite 520]
24.2.4.1 - 18.2.4.1 Electron Beam Irradiation [Seite 520]
24.2.4.2 - 18.2.4.2 Gamma Irradiation [Seite 522]
24.2.5 - 18.2.5 Samples Characterization [Seite 522]
24.2.5.1 - 18.2.5.1 Mechanical Test [Seite 522]
24.2.5.2 - 18.2.5.2 Scanning Electron Microscopy [Seite 522]
24.2.5.3 - 18.2.5.3 Force Modulation Microscopy [Seite 523]
24.2.6 - 18.2.6 Biodegradability [Seite 524]
24.2.6.1 - 18.2.6.1 Enzymatic Degradation [Seite 524]
24.2.6.2 - 18.2.6.2 Biodegradability in Compost Soil [Seite 524]
24.2.7 - 18.2.7 Cytotoxicity Test [Seite 524]
24.2.7.1 - 18.2.7.1 Cell Culture [Seite 524]
24.2.7.2 - 18.2.7.2 Extract Preparation [Seite 524]
24.2.8 - 18.2.8 Bioburden Test [Seite 525]
24.2.9 - 18.2.9 Sterility Test [Seite 526]
24.3 - 18.3 Results and Discussion [Seite 526]
24.3.1 - 18.3.1 Mechanical Properties [Seite 526]
24.3.2 - 18.3.2 Scanning Electron Microscopy [Seite 528]
24.3.3 - 18.3.3 Atomic Force Microscopy and Force Modulation Microscopy [Seite 532]
24.3.4 - 18.3.4 Cytoxicity [Seite 535]
24.3.5 - 18.3.5 Bioburden [Seite 536]
24.3.6 - 18.3.6 Sterility Test [Seite 539]
24.3.7 - 18.3.7 Enzymatic Degradation [Seite 540]
24.3.8 - 18.3.8 Biodegradation in Simulated Compost Soil [Seite 542]
24.4 - 18.4 Conclusion [Seite 543]
24.5 - Acknowledgments [Seite 544]
24.6 - References [Seite 545]
25 - 19 Packaging Composite Materials from Renewable Resources [Seite 549]
25.1 - 19.1 Introduction [Seite 549]
25.2 - 19.2 Sustainable Packaging [Seite 551]
25.3 - 19.3 Packaging Materials/Composites [Seite 555]
25.4 - 19.4 Biomass Packaging Materials/Biobased Polymers [Seite 556]
25.4.1 - 19.4.1 Cellulose/Cellulose Derives/Cellulose Blends [Seite 556]
25.4.2 - 19.4.2 Chitosan/Chitosan Derives/Chitosan Blends [Seite 557]
25.4.3 - 19.4.3 Gelatin/Gelatin Derives/Gelatin Blends [Seite 559]
25.4.4 - 19.4.4 Starch/Starch Derives/Starch Blends [Seite 559]
25.4.5 - 19.4.5 Fruit Purees [Seite 561]
25.5 - 19.5 Vegetable Oils/Essential Oils [Seite 562]
25.6 - 19.6 Aliphatic Polyesters [Seite 562]
25.6.1 - 19.6.1 Polylactide Acids (PLAs)/PLA Blends [Seite 563]
25.6.2 - 19.6.2 Poly(hydroxyalkanoates)/PHAs Blends [Seite 565]
25.6.3 - 19.6.3 Polycaprolactone [Seite 566]
25.6.4 - 19.6.4 Polyesteramide [Seite 566]
25.6.5 - 19.6.5 Polyurethane/PU Blends [Seite 566]
25.7 - 19.7 Synthetic/Natural Polymers Reinforcement with Any Other Renewable Resources/Vegetables Fibers Blends [Seite 568]
25.8 - 19.8 Edible Packaging Materials (Composites) [Seite 569]
25.9 - 19.9 Processing Methods or Tools for Biopackaging Composites Productions [Seite 570]
25.9.1 - 19.9.1 Hot Press Molding and Foaming: Melt-processed Blends [Seite 570]
25.9.2 - 19.9.2 Casting Method [Seite 570]
25.9.3 - 19.9.3 Aqueous Blends [Seite 571]
25.9.4 - 19.9.4 Extrusion [Seite 571]
25.9.5 - 19.9.5 Injection Molding [Seite 571]
25.9.6 - 19.9.6 Co-extrusion [Seite 572]
25.9.7 - 19.9.7 Ultrasonic [Seite 572]
25.10 - 19.10 Nanopackaging (Bionanocomposites) [Seite 573]
25.11 - 19.11 Preparation Methods for Packaging Nanocomposites [Seite 574]
25.12 - 19.12 Edible Nanocomposite-based Material [Seite 576]
25.13 - 19.13 Summary/Conclusion [Seite 576]
25.14 - Abbreviations [Seite 577]
25.15 - References [Seite 578]
26 - 20 Physicochemical Properties of Ash-Based Geopolymer Concrete [Seite 587]
26.1 - 20.1 Precursor of Geopolymerization [Seite 587]
26.2 - 20.2 Back Ground of Precursor [Seite 588]
26.3 - 20.3 Present Scenario of Geopolymer [Seite 588]
26.4 - 20.4 Geopolymer Concrete [Seite 589]
26.5 - 20.5 Constituents of Geopolymers [Seite 590]
26.6 - 20.6 Evolution of Geopolymer [Seite 590]
26.7 - 20.7 Works on Geopolymer Concrete [Seite 591]
26.7.1 - 20.7.1 Fresh and Hardened Concrete [Seite 591]
26.7.2 - 20.7.2 Durability of Geopolymer Concrete [Seite 592]
26.7.2.1 - 20.7.2.1 Acid Attack [Seite 592]
26.7.2.2 - 20.7.2.2 Sulfate Attack [Seite 592]
26.7.2.3 - 20.7.2.3 Water Absorption [Seite 593]
26.7.3 - 20.7.3 Bond Strength of Geopolymer Concrete [Seite 594]
26.7.4 - 20.7.4 Thermal Properties of Geopolymer Concrete [Seite 595]
26.7.5 - 20.7.5 Compressive Strength Test on Geopolymer Mortar Cubes [Seite 596]
26.7.5.1 - 20.7.5.1 Mortar Cube [Seite 596]
26.7.5.2 - 20.7.5.2 The Compressive Strength of Geopolymer Concrete Cubes [Seite 596]
26.7.6 - 20.7.6 Split Tensile Strength [Seite 596]
26.7.7 - 20.7.7 Reinforced Geopolymer Concrete Columns [Seite 597]
26.8 - 20.8 Economic Benefits of Geopolymer Concrete [Seite 598]
26.9 - 20.9 Authors Study [Seite 598]
26.10 - 20.10 Conclusion [Seite 601]
26.11 - References [Seite 602]
27 - 21 A Biopolymer Derived from Castor Oil Polyurethane: Experimental and Numerical Analyses [Seite 605]
27.1 - 21.1 Introduction [Seite 605]
27.1.1 - 21.1.1 Polymer Mechanical Behavior: Experiments and Constitutive Models [Seite 607]
27.2 - 21.2 Experimental Analyses [Seite 610]
27.2.1 - 21.2.1 Materials and Manufacturing Process [Seite 610]
27.2.2 - 21.2.2 Mechanical Test Methods [Seite 610]
27.3 - 21.3 Constitutive Models [Seite 614]
27.4 - 21.4 Results [Seite 615]
27.4.1 - 21.4.1 Experimental Tensile Tests Results [Seite 615]
27.4.2 - 21.4.2 Experimental Compression Tests Results [Seite 616]
27.4.3 - 21.4.3 Experimental Bending Tests Results [Seite 619]
27.4.4 - 21.4.4 Experimental DMTA Results [Seite 621]
27.4.5 - 21.4.5 Constitutive Models Results [Seite 622]
27.5 - 21.5 Conclusions [Seite 626]
27.6 - Acknowledgment [Seite 628]
27.7 - References [Seite 628]
28 - 22 Natural Polymer-Based Biomaterials and its Properties [Seite 631]
28.1 - 22.1 Introduction [Seite 632]
28.2 - 22.2 Modifications of PLA [Seite 636]
28.3 - 22.3 PLA Applications [Seite 636]
28.4 - 22.4 Characterization by FT-IR [Seite 638]
28.5 - 22.5 Characterization by Optical Microscopy [Seite 639]
28.6 - 22.6 Characterization by Electron Microscopy [Seite 640]
28.7 - 22.7 Characterization by Mechanical Testing [Seite 642]
28.8 - 22.8 Characterization of GPC [Seite 648]
28.9 - 22.9 Characterization of Dynamic Mechanical Thermal Analysis [Seite 649]
28.10 - References [Seite 650]
29 - 23 Physical and Mechanical Properties of Polymer Membranes from Renewable Resources [Seite 655]
29.1 - 23.1 Introduction [Seite 655]
29.2 - 23.2 Membranes Classifications [Seite 657]
29.2.1 - 23.2.1 Typical Membrane Technique Preparation [Seite 657]
29.2.1.1 - 23.2.1.1 Particulate Leaching/Solvent Casting [Seite 658]
29.2.1.2 - 23.2.1.2 Gas Foaming [Seite 658]
29.2.1.3 - 23.2.1.3 Freeze Drying [Seite 658]
29.2.1.4 - 23.2.1.4 Electrospinning [Seite 658]
29.2.1.5 - 23.2.1.5 Phase Inversion [Seite 659]
29.2.2 - 23.2.2 Membrane Modification [Seite 659]
29.2.2.1 - 23.2.2.1 Blending [Seite 660]
29.2.2.2 - 23.2.2.2 Curing [Seite 660]
29.2.2.3 - 23.2.2.3 Grafting [Seite 661]
29.3 - 23.3 Overview of Fabrication Method of Polymer Membranes from Renewable Resources [Seite 661]
29.3.1 - 23.3.1 BP/PEG (Blends)-1 Ply Fabrication [Seite 661]
29.3.1.1 - 23.3.1.1 Renewable Polymer (BP) Preparation [Seite 661]
29.3.1.2 - 23.3.1.2 Poly(ethylene glycol) Preparation [Seite 661]
29.3.1.3 - 23.3.1.3 BP/PEG (Curing): 2 Plies Fabrication [Seite 661]
29.3.1.4 - 23.3.1.4 BP/PEG (grafting)-1 Ply Fabrication [Seite 662]
29.3.1.5 - 23.3.1.5 BP/DMF Fabrication [Seite 662]
29.4 - 23.4 Chemical Reaction of Renewable Polymer (BP) [Seite 664]
29.4.1 - 23.4.1 Functional Group Determination by Means of Infrared Spectroscopic (FTIR) for BP, PEG, and BP/PEG (Blends)-1 Ply, BP/PEG (curing)-2 Plies, and BP/PEG (grafting)-1 Ply [Seite 666]
29.4.1.1 - 23.4.1.1 BP/PEG (Blends)-1 Ply [Seite 667]
29.4.1.2 - 23.4.1.2 BP/PEG (Curing)-2 Plies [Seite 667]
29.4.1.3 - 23.4.1.3 BP/PEG (Grafting)-1 Ply [Seite 668]
29.4.2 - 23.4.2 BP/DMF [Seite 668]
29.5 - 23.5 Morphological Changes of Polymer Membrane by Scanning Electron Microscope [Seite 669]
29.6 - 23.6 Water Permeability [Seite 672]
29.7 - 23.7 Conclusions [Seite 673]
29.8 - References [Seite 674]
30 - Index [Seite 677]
31 - EULA [Seite 691]