Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
Chapter 1
IN THIS CHAPTER
Working with data files and databases
Seeing how databases, queries, and database applications fit together
Looking at different database models
Charting the rise of relational databases
SQL (pronounced ess cue el, but you'll hear some people say see quel) is the international standard language used in conjunction with relational databases - and it just so happens that relational databases are the dominant form of data storage throughout the world. In order to understand why relational databases are the primary repositories for the data of both small and large organizations, you must first understand the various ways in which computer data can be stored and how those storage methods relate to the relational database model. To help you gain that understanding, I spend a good portion of this chapter going back to the earliest days of electronic computers and recapping the history of data storage.
I realize that grand historical overviews aren't everybody's cup of tea, but I'd argue that it's important to see that the different data storage strategies that have been used over the years each have their own strengths and weaknesses. Ultimately, the strengths of the relational model overshadowed its weaknesses and it became the most frequently used method of data storage. Shortly after that, SQL became the most frequently used method of dealing with data stored in a relational database.
In the early days of computers, the concept of a database was more theoretical than practical. Vannevar Bush, the 20th-century visionary, conceived of the idea of a database in 1945, even before the first electronic computer was built. However, practical implementations of databases - such as IBM's IMS (Information Management System), which kept track of all the parts on the Apollo moon mission and its commercial followers - did not appear for a number of years after that. For far too long, computer data was still being kept in files rather than migrated to databases.
Any software system that performs a useful function is complex. The more valuable the function, the more complex its implementation. Regardless of how the data is stored, the complexity remains. The only question is where that complexity resides.
Any nontrivial computer application has two major components: the program and the data. Although an application's level of complexity depends on the task to be performed, developers have some control over the location of that complexity. The complexity may reside primarily in the program part of the overall system, or it may reside in the data part. In the sections that follow, I tell you how the location of complexity in databases shifted over the years as technological improvements made that possible.
In the earliest applications of computers to solve problems, all of the complexity resided in the program. The data consisted of one data record of fixed length after another, stored sequentially in a file. This is called a flat file data structure. The data file contains nothing but data. The program file must include information about where particular records are within the data file (one form of metadata, whose sole purpose is to organize the primary data you really care about). Thus, for this type of organization, the complexity of managing the data is entirely in the program.
Here's an example of data organized in a flat file structure:
Harold Percival 26262 S. Howards Mill Rd.Westminster CA92683 Jerry Appel 32323 S. River Lane Road Santa Ana CA92705 Adrian Hansen 232 Glenwood Court Anaheim CA92640 John Baker 2222 Lafayette Street Garden GroveCA92643 Michael Pens 77730 S. New Era Road Irvine CA92715 Bob Michimoto 25252 S. Kelmsley Drive Stanton CA92610 Linda Smith 444 S.E. Seventh StreetCosta Mesa CA92635 Robert Funnell 2424 Sheri Court Anaheim CA92640 Bill Checkal 9595 Curry Drive Stanton CA92610 Jed Style 3535 Randall Street Santa Ana CA92705
This example includes fields for name, address, city, state, and zip code. Each field has a specific length, and data entries must be truncated to fit into that length. If entries don't use all the space allotted to them, storage space is wasted.
The flat file method of storing data has several consequences, some beneficial and some not. First, the beneficial consequences:
Wow! What could be better? A data organization that minimizes storage requirements and at the same time maximizes speed of operation seems like the best of all possible worlds. But wait a minute .
Flat file systems came into use in the 1940s. We have known about them for a long time, and yet today they are almost entirely replaced by database systems. What's up with that? Perhaps it is the not-so-beneficial consequences:
In the early days of electronic computers, storage was relatively expensive, so system designers were highly motivated to accomplish their tasks using as little storage space as possible. Also, in those early days, computers were much slower than they are today, so doing things the fastest possible way also had a high priority. Both of these considerations made flat file systems the architecture of choice, despite the problems inherent in updating the structure of a system's data.
The situation today is radically different. The cost of storage has plummeted and continues to drop on an exponential curve. The speed at which computations are performed has increased exponentially also. As a result, minimizing storage requirements and maximizing the speed with which an operation can be performed are no longer the primary driving forces that they once were. Because systems have continually become bigger and more complex, the problem of maintaining them has likewise grown. For all these reasons, flat file systems have lost their attractiveness, and databases have replaced them in practically all application areas.
The major selling point of database systems is that the metadata resides on the data end of the system rather than in the program. The program doesn't have to know anything about the details of how the data is stored. The program makes logical requests for data, and the DBMS translates those logical requests into commands that go out to the physical storage hardware to perform whatever...
Dateiformat: ePUBKopierschutz: Adobe-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet – also für „fließenden” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!
Weitere Informationen finden Sie in unserer E-Book Hilfe.