Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
The 32 full and 2 short papers presented in this volume were carefully reviewed and selected from 99 submissions. They were organized in topical sections named: fundamental theory and methods of computational linguistics; information retrieval, dialogue and question answering; text generation and summarization; knowledge graph and information extraction; machine translation and multilingual information processing; minority language information processing; language resource and evaluation; social computing and sentiment analysis; and NLP applications.
Fundamental Theory and Methods of Computational Linguistics.- A Joint Model for Graph-based Chinese Dependency Parsing.- Semantic-aware Chinese Zero Pronoun Resolution with Pre-trained Semantic Dependency Parser.- Improving Sentence Classification by Multilingual Data Augmentation and Consensus Learning.- Information Retrieval, Dialogue and Question Answering.- Attention-Based Graph Neural Network with Global Context Awareness for Document Understanding.- Combining Impression Feature Representation for Multi-turn Conversational Question Answering.- Text Generation and Summarization.- Chinese Long and Short Form Choice Exploiting Neural Network Language Modeling Approaches.- Refining Data for Text Generation.- Plan-CVAE: A Planning-based Conditional Variational Autoencoder for Story Generation.- Knowledge Graph and Information Extraction.- Towards Causal Explanation Detection with Pyramid Salient-Aware Network.- Named Entity Recognition with Context-AwareDictionary Knowledge.- Chinese Named Entity Recognition via Adaptive Multi-pass Memory Network with Hierarchical Tagging Mechanism.- A Practice of Tourism Knowledge Graph Construction based on Heterogeneous Information.- A Novel Joint Framework for Multiple Chinese Events Extraction.- Entity Relative Position Representation based Multi-head Selection for Joint Entity and Relation Extraction.- Machine Translation and Multilingual Information Processing.- A Mixed Learning Objective for Neural Machine Translation .- Multi-Reward based Reinforcement Learning for Neural Machine Translation.- Minority Language Information Processing.- Low-Resource Text Classification via Cross-lingual Language Model Fine-tuning.- Constructing Uyghur Name Entity Recognition System using Neural Machine Translation Tag Projection.- Recognition Method of Important Words in Korean Text based on Reinforcement Learning.- Mongolian Questions Classification Based on Multi-Head Attention.- Language Resource and Evaluation.- The Annotation Scheme of English-Chinese Clause Alignment Corpus.- Categorizing Offensive Language in Social Networks: A Chinese Corpus, Systems and an Explainable Tool.- LiveQA: A Question Answering Dataset over Sports Live.- Chinese and English Elementary Discourse Units Recognition based on Bi-LSTM-CRF Model.- Social Computing and Sentiment Analysis.- Better Queries for Aspect-Category Sentiment Classification.- Multimodal Sentiment Analysis with Multi-perspective Fusion Network Focusing on Sense Attentive Language.- CAN-GRU: a Hierarchical Model for Emotion Recognition in Dialogue.- A Joint Model for Aspect-Category Sentiment Analysis with Shared Sentiment Prediction Layer.- NLP Applications.- Compress Polyphone Pronunciation Prediction Model with Shared Labels.- Multi-task Legal Judgement Prediction Combining a Subtask of Seriousness of Charge.- Clickbait Detection with Style-aware Title Modeling and Co-attention.- Konwledge-EnabledDiagnosis Assistant Based on Obstetric EMRs and Knowledge Graph.- Reusable Phrase Extraction Based on Syntactic Parsing.- WAE_RN: Integrating Wasserstein Autoencoder and Relational Network for Text Sequence.
Dateiformat: PDFKopierschutz: Wasserzeichen-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Wasserzeichen-DRM wird hier ein „weicher” Kopierschutz verwendet. Daher ist technisch zwar alles möglich – sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.
Weitere Informationen finden Sie in unserer E-Book Hilfe.