Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
»[W]ir [sind] Teil des Kosmos [.]. Wir sind aus dem Stoff der Sterne. Wir sind eine Möglichkeit für den Kosmos, sich selbst zu entdecken.«
- Carl Sagan -
Vor etwa 4,5 Milliarden Jahren ballte sich unser Planet aus einer Staub- und Gaswolke zusammen, die um die noch junge Sonne kreiste. Doch obwohl auf seiner neu gebildeten Oberfläche unvorstellbar lebensfeindliche Bedingungen geherrscht haben müssen, scheint das Leben überraschend schnell Fuß gefasst zu haben (auch wenn es sehr lange nichts als Einzeller hervorbrachte). Aber wie genau hat das Leben begonnen? Dieses Rätsel hat Generationen namhafter Wissenschaftler beschäftigt und zu einer Reihe von außergewöhnlichen Ideen geführt.
Wo nahm das Leben seinen Anfang - an den Ufern der ersten Meere, in den eisigen Tiefen der urzeitlichen Ozeane oder vielleicht doch auf einem ganz anderen Planeten?
Ein Laborexperiment aus den 1950er-Jahren förderte die Grundbestandteile der DNA zutage. RICHTIG / FALSCH
Biologen vermuten, dass unsere frühesten Vorfahren mit Mikroben verwandt sein könnten, die Archaebakterien genannt werden und heute nur noch in extrem heißen oder sauren Umgebungen vorkommen. RICHTIG / FALSCH
Kohlenstoff und Wasser sind unverzichtbare Bausteine des Lebens: Ohne sie ist eine komplexe Biochemie unmöglich. RICHTIG / FALSCH
Einzellige Organismen sind in der Lage, die Reise zwischen zwei Planeten zu überleben, und könnten so das Leben auf die Erde gebracht haben. RICHTIG / FALSCH
Komplexe, mehrzellige Lebensformen etablierten sich auf der Erde während der sogenannten Kambrischen Artenexplosion vor rund 540 Millionen Jahren. RICHTIG / FALSCH
Bei dieser Frage gehen die Meinungen weit auseinander. Wahrscheinlich würden die meisten Biologen aber der breiten Definition zustimmen, nach der ein lebender Organismus ein sich selbst organisierendes System ist, das seiner Umgebung Energie entnehmen kann, um sich selbst zu erhalten, zu wachsen, sich zu vermehren und an seine Umwelt anzupassen. Praktisch gesehen handelt es sich dabei um die Nutzung diverser komplexer chemischer Reaktionen in einer günstigen Umgebung, die wir »Zelle« nennen. Zellen kommen in einer Vielzahl von mehr oder weniger komplexen Formen vor und sind die Grundbausteine des Lebens. Wenn wir also danach fragen, wie das Leben begonnen hat, dann forschen wir in Wahrheit nach der Entstehung der ersten Zellen.
Urzeitliches Gestein von Meteoriten und der Erde legt nahe, dass unser Planet vor etwa 4,6 Milliarden Jahren entstand. Am Anfang war seine Oberfläche größtenteils flüssig. Doch obwohl er bis vor mindestens 3,8 Milliarden Jahren heftig von großen Asteroiden bombardiert wurde, sind die ältesten Fossilien - die Überreste von Mikrobenkolonien namens Stromatoliten, die man in rund 3,5 Milliarden Jahre alten Felsen gefunden hat - nur ein paar Hundert Millionen Jahre jünger. Mehr noch, eingeschlossen im Inneren 4,1 Milliarden Jahre alter Zirconiumkristalle fanden Geochemiker 2015 Spuren von Chemikalien, die anscheinend von lebenden Organismen produziert worden waren. Wie hatte das Leben also derart schnell Fuß fassen können?
1871 spekulierte Charles Darwin (zwölf Jahre nach der Veröffentlichung seiner Theorie über Evolution durch natürliche Selektion) in einem Brief darüber, dass das Leben in einem »kleinen, warmen Teich« auf der sich noch immer abkühlenden Oberfläche der urzeitlichen Erde begonnen haben könnte. Diese Theorie hat die Vorstellungskraft vieler Wissenschaftler beflügelt und wird gemeinhin als Ursuppen-Hypothese bezeichnet (obwohl der Begriff erst in den 1920er-Jahren geprägt wurde). Wasser ist für das Leben ganz sicher ein Muss - schließlich können sich komplexe Chemikalien unmöglich bilden, wenn sich ihre Bausteine nicht in irgendeiner Lösung umherbewegen, zueinander finden und miteinander reagieren können. Zum Glück ist Wasser eine der besten Lösungen weit und breit und auf der Erde alles andere als knapp.
Im Jahr 1952 unternahmen die US-amerikanischen Biochemiker Stanley Miller und Harold Urey den bedeutenden Versuch, die Bedingungen in der Ursuppe nachzustellen. Dazu ließen sie Dampf durch ein Gemisch aus Wasserstoff, Methan und Ammoniakgasen dringen (die als wahrscheinliche Elemente der frühen Erdatmosphäre galten) und führten diesem Mix gelegentlich Energie in Form elektrischer Funken aus Kunstblitzen zu. Nach einer Woche wurde das Kondensat analysiert, wobei Miller berichtete, dass er darin mindestens drei und möglicherweise noch einige weitere Aminosäuremoleküle (unverzichtbare Bausteine des Lebens) gefunden habe. Nach Millers Tod, im Jahr 2007, untersuchten Wissenschaftler mit sensibleren Messverfahren nochmals einige der Proben, die nach dem Originalexperiment versiegelt worden waren, und fanden darin nicht weniger als 20 unterschiedliche Aminosäuren.
Auf den Spuren von Miller und Urey haben viele Chemiker seitdem versucht, mit differenzierteren Experimenten noch besser nachzustellen, was wir mittlerweile über die frühen Umweltbedingungen auf der Erde wissen. Es scheint inzwischen fraglos, dass relativ einfache chemische Reaktionen nach kurzer Zeit zu einer Suppe aus einfachen, kohlenstoffbasierten »organischen« Molekülen geführt haben (Kohlenstoff ist für das Leben unerlässlich, weil er die vielfältigsten chemischen Verbindungen von allen bekannten Elementen eingeht). Die große Herausforderung ist jedoch, von diesen einfachen Bausteinen zu komplexen und sich selbst replizierenden Molekülen wie der DNA zu gelangen (vgl. Kap. Gene und die DNA). Doch einige Wissenschaftler bezweifeln, dass willkürliche chemische Reaktionen in der Ursuppe - im engen Zeitfenster von der Erdentstehung bis zu den ersten fossilen Zeugnissen - eine derartige Komplexität erlangt haben könnten.
Ein beliebter Lösungsansatz für dieses Problem verlegt den Geburtsort des Lebens von seichten Oberflächengewässern in die Tiefen der Ozeane. Dort speien Vulkanschlote, sogenannte Schwarze Raucher, einen reichhaltigen chemischen Nährstoffmix ins kalte, dunkle Wasser. Die in den 1970er-Jahren entdeckten und an Stalagmiten erinnernden Mineralsäulen beherbergen ganze Ökosysteme, die völlig ohne die Wärme oder das Licht der Sonne gedeihen. Seit ein paar Jahren spekulieren Biologen, dass Mikroporen im Inneren der »Raucher« als natürliche Brutstätten der ersten Lebensformen fungiert haben könnten. Der Grund ist, dass sich darin eine üppige Chemikaliensuppe verfängt - unter anderem herabgesunkenes organisches Material -, und zwar in einer energiereichen Umgebung, die für die Entstehung komplexer Chemie im Schnellverfahren ideal ist.
Noch eine Möglichkeit, das rasante Auftauchen des Lebens zu erklären, ist anzunehmen, dass es gar nicht erst auf der Erde begonnen hat. Die Panspermie-Hypothese behauptet stattdessen, dass die Bausteine des Lebens in unserer gesamten Galaxis verstreut sind und die Meteoriten und Kometen, die auf unserem neugeborenen Planeten einschlugen, zugleich ein gebrauchsfertiges Basispaket an organischen Chemikalien - ja vielleicht sogar vollständige, tiefgefrorene Zellen - mit sich brachten. Verfechter der Theorie argumentieren, dass diese den willkürlichen chemischen Reaktionen einige Milliarden Jahre mehr Zeit lässt, um zufällig auf das Rezept des Lebens zu stoßen. Es mag vielleicht weit hergeholt klingen, doch Astronomen haben in Kometen und interstellaren Wolken tatsächlich komplexe organische Moleküle gefunden. Außerdem weiß man mittlerweile, dass große Meteoriteneinschläge gelegentlich Gesteinsbrocken zwischen den Planeten unseres Sonnensystems hin- und hertransportieren, und es gibt Anzeichen dafür, dass manche Erdmikroben und sogar komplexere Lebensformen überraschend lange in den unwirtlichen Bedingungen des freien Weltraums überleben können.
Man nimmt an, dass die ersten Lebensformen in zwei große, sogenannte Domänen unterteilt waren: Archaebakterien und Eubakterien. Bei beiden handelte es sich um Einzeller, auch wenn einige von ihnen größere Kolonien bildeten. Archaebakterien nutzen eine große Bandbreite metabolischer und chemischer Prozesse, um alles Lebensnötige aus ihrer Umwelt herauszuholen. Man findet sie auch heute noch an Orten, wie heißen Säurequellen und Schwarzen Rauchern, die einst für lebensfeindlich gehalten wurden. Eubakterien hingegen sind in einem schmaleren Spektrum von »günstigen« Lebensbedingungen zu finden und nutzen vertrautere Stoffwechselprozesse wie Atmung, Photosynthese und Fermentation. Kurioserweise deuten Genbefunde aber darauf hin, dass unsere eigene Domäne, die der komplexen Lebewesen oder »Eukaryoten«, tatsächlich näher mit den Archaebakterien als mit den Eubakterien verwandt ist.
In der Frühzeit herrschten auf der...
Dateiformat: ePUBKopierschutz: Wasserzeichen-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet - also für „fließenden” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Wasserzeichen-DRM wird hier ein „weicher” Kopierschutz verwendet. Daher ist technisch zwar alles möglich – sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.
Weitere Informationen finden Sie in unserer E-Book Hilfe.