Epilepsy is a neurological disorder that affects millions of patients worldwide and arises from the concurrent action of multiple pathophysiological processes. The power of mathematical analysis and computational modeling is increasingly utilized in basic and clinical epilepsy research to better understand the relative importance of the multi-faceted, seizure-related changes taking place in the brain during an epileptic seizure. This groundbreaking book is designed to synthesize the current ideas and future directions of the emerging discipline of computational epilepsy research. Chapters address relevant basic questions (e.g., neuronal gain control) as well as long-standing, critically important clinical challenges (e.g., seizure prediction). Computational Neuroscience in Epilepsy should be of high interest to a wide range of readers, including undergraduate and graduate students, postdoctoral fellows and faculty working in the fields of basic or clinical neuroscience, epilepsy research, computational modeling and bioengineering.
- Covers a wide range of topics from molecular to seizure predictions and brain implants to control seizures
- Contributors are top experts at the forefront of computational epilepsy research
- Chapter contents are highly relevant to both basic and clinical epilepsy researchers
Sprache
Verlagsort
Verlagsgruppe
Elsevier Science & Techn.
Illustrationen
Approx. 250 illustrations
ISBN-13
978-0-08-055953-7 (9780080559537)
Schweitzer Klassifikation
ContributorsForewordRise of the Machines - On the Threshold of a New Era in Epilepsy ResearchIntroduction: Applications and Emerging Concepts of ComputationalNeuroscience in Epilepsy ResearchPart I Computational Modeling Techniques and Databases in Epilepsy Research 1 Simulation of Large Networks: Technique and Progress 2 The Neuron Simulation Environment in Epilepsy Research 3 The CoCoDat Database: Systematically Organizing and Selecting Quantitative Data on Single Neurons and Microcircuitry 4 Validating Models of Epilepsy 5 Using NeuroConstruct to Develop and Modify Biologically Detailed 3D Neuronal Network Models in Health and Disease 6 Computational Neuroanatomy of the Rat Hippocampus: Implications and Applications to EpilepsyPart II Epilepsy and Altered Network Topology 7 Modeling Circuit Alterations in Epilepsy: A Focus on Mossy Cell Loss and Mossy Fiber Sprouting in the Dentate Gyrus 8 Functional Consequences of Transformed Network Topology in Hippocampal Sclerosis 9 Multiple-Scale Hierarchical Connectivity of Cortical Networks Limits the Spread of ActivityPart III Destabilization of Neuronal Networks 10 Computer Simulations of Sodium Channel Mutations that Cause Generalized Epilepsy with Febrile Seizures Plus 11 Gain Modulation and Stability in Neural Networks 12 Neocortical Epileptiform Activity in Neuronal Models with Biophysically Realistic Ion Channels 13 Corticothalamic Feedback: A Key to Explain Absence Seizures 14 Mechanisms of Graded Persistent Activity: Implications for Epilepsy 15 Small Networks, Large Networks, Experiment and Theory - Can We Bring Them Together with Oscillations, Heterogeneity and Inhibition?Part IV Homeostasis and Epilepsy 16 Stability and Plasticity in Neuronal and Network Dynamics 17 Homeostatic Plasticity and Post-Traumatic EpileptogenesisPart V Mechanisms of Synchronization 18 Synchronization in Hybrid Neuronal Networks 19 Complex Synaptic Dynamics of GABAergic Networks of the Hippocampus 20 Experimental and Theoretical Analyses of Synchrony in Feedforward Networks 21 Modulation of Synchrony by Interneurons: Insights from Attentional Modulation of Responses in the Visual CortexPart VI Interictal to Ictal Transitions 22 Cellular and Network Mechanisms of Oscillations Preceding and Perhaps Initiating Epileptic Discharges 23 Transition to Ictal Activity in Temporal Lobe Epilepsy: Insights from Macroscopic Models 24 Unified Modeling and Analysis of Primary Generalized Seizures 25 A Neuronal Network Model of Corticothalamic Oscillations: The Emergence of Epileptiform Absence Seizures 26 Extracellular Potassium Dynamics and Epileptogenesis 27 Slow Waves Associated with Seizure ActivityPart VII Seizure Dynamics 28 Dynamics of Epileptic Seizures during Evolution and Propagation 29 Are Correlation Dimension and Lyapunov Exponents Useful Tools for Prediction of Epileptic Seizures? 30 Towards a Dynamics of Seizure MechanicsPart VIII Towards Computer-Aided Therapy 31 Principles and Practice of Computer-Aided Drug Design as Applied to the Discovery of Antiepileptic Agents 32 Computation Applied to Clinical Epilepsy and Antiepileptic Devices 33 Microelectrode-based Epilepsy Therapy: A Hybrid Neural Prosthesis Incorporating Seizure Prediction and Intervention with Biomimetic Maintenance of Normal Hippocampal FunctionIndex