1 - Science of Synthesis Applications of Domino Transformations in Organic Synthesis 1 [Seite 1]
2 - Title Page [Seite 7]
3 - Copyright [Seite 8]
4 - Preface [Seite 9]
5 - Science of Synthesis Reference Library [Seite 11]
6 - Volume Editor's Preface [Seite 13]
7 - Abstracts [Seite 15]
8 - Applications of Domino Transformations in Organic Synthesis 1 [Seite 23]
9 - Table of Contents [Seite 25]
10 - Introduction [Seite 37]
11 - 1.1 Polyene Cyclizations [Seite 49]
11.1 - 1.1.1 Cationic Polyene Cyclizations Mediated by Brønsted or Lewis Acids [Seite 50]
11.1.1 - 1.1.1.1 Most Used Cationic Polyene Cyclization Methods [Seite 51]
11.1.1.1 - 1.1.1.1.1 Polyene Cyclization via Biomimetic Heterolytic Opening of Epoxides by Alkylaluminum Lewis Acids [Seite 51]
11.1.1.2 - 1.1.1.1.2 Polyene Cyclization Mediated by Carbophilic Lewis Acids [Seite 53]
11.1.2 - 1.1.1.2 Recent Advances in Cationic Polycyclization: Halonium-Initiated Polycyclization [Seite 53]
11.1.3 - 1.1.1.3 Other Common Cationic Polyene Cyclization Methods [Seite 55]
11.1.3.1 - 1.1.1.3.1 Catalytic, Enantioselective, Protonative Polycyclization [Seite 55]
11.1.3.1.1 - 1.1.1.3.1.1 Chiral Transfer from a Brønsted Acid [Seite 55]
11.1.3.1.2 - 1.1.1.3.1.2 Chiral Transfer from (R)-2,2'-Dichloro-1,1'-bi-2-naphthol-Antimony(V) Chloride Complex [Seite 55]
11.1.3.1.3 - 1.1.1.3.1.3 Chiral Transfer via Nucleophilic Phosphoramidites [Seite 56]
11.1.3.2 - 1.1.1.3.2 Polyene Cyclization Initiated by Unsaturated Ketones and Mediated by Aluminum Lewis Acids [Seite 57]
11.1.3.3 - 1.1.1.3.3 Gold-Mediated Enantioselective Polycyclization [Seite 58]
11.1.3.4 - 1.1.1.3.4 Polycyclization Initiated by an Episulfonium Ion [Seite 59]
11.1.3.5 - 1.1.1.3.5 Polycyclization Initiated by a p-Lewis Acidic Metal [Seite 59]
11.1.3.6 - 1.1.1.3.6 Enantioselective Polyene Cyclization Mediated by Chiral Scalemic Iridium Complexes [Seite 60]
11.1.3.7 - 1.1.1.3.7 Acyliminium-Initiated Polyene Cyclization Mediated by Thioureas [Seite 60]
11.1.3.8 - 1.1.1.3.8 Tail-to-Head Polycyclization [Seite 61]
11.2 - 1.1.2 Radical Polyene Cyclizations [Seite 62]
11.2.1 - 1.1.2.1 Most Used Radical Polycyclization Methods [Seite 62]
11.2.1.1 - 1.1.2.1.1 Cyclization of Mono-and Polyunsaturated ß-Oxo Esters Mediated by Manganese(III) Acetate [Seite 62]
11.2.1.2 - 1.1.2.1.2 Titanocene-Catalyzed Polycyclization [Seite 63]
11.2.2 - 1.1.2.2 Recent Advances in Radical Polycyclization [Seite 64]
11.2.2.1 - 1.1.2.2.1 Manganese- and Cobalt-Catalyzed Cyclization [Seite 64]
11.2.2.2 - 1.1.2.2.2 Manganese-Catalyzed Hydrogenative Polycyclization [Seite 65]
11.2.2.3 - 1.1.2.2.3 Radical Isomerization, Cycloisomerization, and Retrocycloisomerization with a Cobalt-salen Catalyst [Seite 66]
11.2.3 - 1.1.2.3 Other Examples of Radical Polycyclization [Seite 67]
11.2.3.1 - 1.1.2.3.1 Radical Polycyclization via Photoinduced Electron Transfer [Seite 67]
11.2.3.2 - 1.1.2.3.2 Polycyclization via Organo-SOMO Catalysis [Seite 67]
11.2.3.3 - 1.1.2.3.3 Polyene Radical Cascades in Complex Molecule Synthesis [Seite 67]
11.3 - 1.1.3 Polyene Cyclization via Reductive Elimination from a Metal Center or Metathesis [Seite 68]
11.3.1 - 1.1.3.1 Most Used Polycyclization Methods via Reductive Elimination [Seite 68]
11.3.1.1 - 1.1.3.1.1 Palladium Zipper Cyclization Cascades [Seite 68]
11.3.1.2 - 1.1.3.1.2 Polycyclization Cascades via Metathesis [Seite 69]
11.3.2 - 1.1.3.2 Other Polycyclization Methods via Reductive Elimination [Seite 70]
11.3.2.1 - 1.1.3.2.1 Cyclization via p-Allylpalladium Complexes [Seite 70]
11.3.2.2 - 1.1.3.2.2 Palladium-Catalyzed Ene-Yne Cycloisomerization [Seite 71]
11.3.2.3 - 1.1.3.2.3 Cycloisomerization in Complex Molecule Synthesis [Seite 71]
11.4 - 1.1.4 Anionic Polyene Cyclizations [Seite 72]
11.4.1 - 1.1.4.1 Examples of Anionic Polyene Cyclizations [Seite 73]
11.4.1.1 - 1.1.4.1.1 Stereoselective Polycyclization via Intramolecular Diels-Alder Cycloaddition Followed by Aldol Condensation [Seite 73]
11.4.1.2 - 1.1.4.1.2 Transannular Double Michael Cyclization Cascades [Seite 74]
12 - 1.2 Cation-p Cyclizations of Epoxides and Polyepoxides [Seite 79]
12.1 - 1.2.1 exo-Selective Polyepoxide Cascades [Seite 79]
12.1.1 - 1.2.1.1 Brønsted Acid Promoted Cascades [Seite 79]
12.1.2 - 1.2.1.2 Brønsted Base Promoted Cascades [Seite 81]
12.1.3 - 1.2.1.3 Oxocarbenium-Initiated Cascades via Photooxidative Cleavage [Seite 82]
12.2 - 1.2.2 endo-Selective Polyepoxide Cascades [Seite 83]
12.2.1 - 1.2.2.1 Lewis Acid Activation [Seite 83]
12.2.1.1 - 1.2.2.1.1 Alkyl-Directed Cascades [Seite 83]
12.2.2 - 1.2.2.2 Brønsted Base Activation [Seite 87]
12.2.2.1 - 1.2.2.2.1 Trimethylsilyl-Directed Cascades [Seite 87]
12.2.3 - 1.2.2.3 Distal Electrophilic Activation [Seite 88]
12.2.3.1 - 1.2.2.3.1 Bromonium-Initiated Cascades [Seite 88]
12.2.3.2 - 1.2.2.3.2 Oxocarbenium-Initiated Cascades via Photooxidative Cleavage [Seite 90]
12.2.3.3 - 1.2.2.3.3 Carbocation-Initiated Cascades via Halide Abstraction [Seite 91]
12.2.4 - 1.2.2.4 Water-Promoted Cascades [Seite 92]
12.2.4.1 - 1.2.2.4.1 Cascades of Diepoxides Templated by a Tetrahydropyran [Seite 92]
12.2.4.2 - 1.2.2.4.2 Cascades of Diepoxides Templated by a Dioxane [Seite 93]
12.2.4.3 - 1.2.2.4.3 Cascades of Triepoxides Templated by a Tetrahydropyran [Seite 93]
12.3 - 1.2.3 Epoxide Cascades with C-C p-Bonds [Seite 94]
12.3.1 - 1.2.3.1 Cascades Terminated by Alkenes and Alkynes [Seite 94]
12.3.2 - 1.2.3.2 Cascades Terminated by Arenes [Seite 96]
12.3.3 - 1.2.3.3 Cascades Terminated by Protected Phenols [Seite 99]
13 - 1.3 Metathesis Reactions [Seite 103]
13.1 - 1.3.1 Enyne-Metathesis-Based Domino Reactions in Natural Product Synthesis [Seite 103]
13.1.1 - 1.3.1.1 Mechanism [Seite 107]
13.1.1.1 - 1.3.1.1.1 Alkylidene Carbene Catalyzed Reactions [Seite 107]
13.1.1.2 - 1.3.1.1.2 p-Lewis Acid Catalyzed Reactions [Seite 111]
13.1.1.3 - 1.3.1.1.3 Metallotropic [1,3]-Shift [Seite 111]
13.1.2 - 1.3.1.2 Selectivity [Seite 112]
13.1.2.1 - 1.3.1.2.1 Regioselectivity in Cross Metathesis [Seite 112]
13.1.2.2 - 1.3.1.2.2 exo/endo-Mode Selectivity in Ring-Closing Metathesis [Seite 114]
13.1.2.3 - 1.3.1.2.3 Stereoselectivity in Cross Metathesis and Ring-Closing Metathesis [Seite 115]
13.1.2.4 - 1.3.1.2.4 Regioselectivity in Metallotropic [1,3]-Shift [Seite 116]
13.1.3 - 1.3.1.3 Applications in Natural Product Synthesis [Seite 122]
13.1.3.1 - 1.3.1.3.1 Simple Enyne Metathesis [Seite 124]
13.1.3.1.1 - 1.3.1.3.1.1 Enyne Cross Metathesis [Seite 124]
13.1.3.1.2 - 1.3.1.3.1.2 Enyne Ring-Closing Metathesis for Small Rings [Seite 128]
13.1.3.2 - 1.3.1.3.2 Domino Enyne Metathesis [Seite 135]
13.1.3.2.1 - 1.3.1.3.2.1 Double Ring-Closing Metathesis with Dienynes [Seite 135]
13.1.3.2.2 - 1.3.1.3.2.2 Domino Ring-Closing Metathesis/Cross Metathesis, Cross Metathesis/Ring-Closing Metathesis, and Cross Metathesis/Cross Metathesis Sequences [Seite 148]
13.1.3.3 - 1.3.1.3.3 Enyne Metathesis/Metallotropic [1,3]-Shift Sequences [Seite 156]
13.1.3.4 - 1.3.1.3.4 Enyne Metathesis/Diels-Alder Reaction Sequences [Seite 159]
13.1.3.5 - 1.3.1.3.5 Enyne Metathesis with p-Lewis Acids [Seite 164]
13.1.4 - 1.3.1.4 Conclusions [Seite 166]
13.2 - 1.3.2 Domino Metathesis Reactions Involving Carbonyls [Seite 171]
13.2.1 - 1.3.2.1 Two-Pot Reactions [Seite 172]
13.2.1.1 - 1.3.2.1.1 Reaction with In Situ Generated Titanium-Alkylidene Complexes Followed by Metathesis [Seite 173]
13.2.2 - 1.3.2.2 One-Pot Reactions [Seite 175]
13.2.2.1 - 1.3.2.2.1 Reaction with Bis(.5-cyclopentadienyl)methylenetitanium(IV)-Type Complexes [Seite 175]
13.2.2.2 - 1.3.2.2.2 Reaction with In Situ Generated Titanium-Alkylidene Complexes [Seite 179]
13.2.2.3 - 1.3.2.2.3 Reaction with Stoichiometric Molybdenum or Tungsten Complexes [Seite 184]
13.2.2.4 - 1.3.2.2.4 Organocatalytic Reactions [Seite 186]
14 - 1.4 Radical Reactions [Seite 193]
14.1 - 1.4.1 Peroxy Radical Additions [Seite 193]
14.1.1 - 1.4.1.1 Initiation from a Preexisting Hydroperoxide [Seite 193]
14.1.1.1 - 1.4.1.1.1 Using Peroxide Initiators [Seite 194]
14.1.1.2 - 1.4.1.1.2 Using Copper(II) Trifluoromethanesulfonate/Oxygen [Seite 197]
14.1.1.3 - 1.4.1.1.3 Using Samarium(II) Iodide/Oxygen [Seite 198]
14.1.2 - 1.4.1.2 Initiation by Metal-Catalyzed Hydroperoxidation [Seite 199]
14.1.2.1 - 1.4.1.2.1 The Mukaiyama Hydration/Hydroperoxidation [Seite 199]
14.1.2.2 - 1.4.1.2.2 Hydroperoxidation-Initiated Domino Transformations [Seite 200]
14.1.2.3 - 1.4.1.2.3 Manganese-Catalyzed Domino Hydroperoxidation [Seite 202]
14.1.3 - 1.4.1.3 Initiation by Radical Addition/Oxygen Quenching [Seite 204]
14.1.3.1 - 1.4.1.3.1 Thiyl Radical Initiation [Seite 204]
14.1.3.1.1 - 1.4.1.3.1.1 Thiol-Alkene Co-oxygenation Reactions [Seite 204]
14.1.3.1.2 - 1.4.1.3.1.2 Domino Transformations of Vinylcyclopropanes [Seite 207]
14.1.3.2 - 1.4.1.3.2 Carbon-Centered Radical Additions [Seite 209]
14.1.3.2.1 - 1.4.1.3.2.1 By C-H Abstraction [Seite 210]
14.1.3.2.2 - 1.4.1.3.2.2 Manganese(III)-Mediated Oxidation of 1,3-Dicarbonyls [Seite 211]
14.1.4 - 1.4.1.4 Heteroatom Oxidation/Cyclopropane Cleavage Pathways [Seite 213]
14.1.5 - 1.4.1.5 Radical Cation Intermediates [Seite 214]
14.1.5.1 - 1.4.1.5.1 1,2-Diarylcyclopropane Photooxygenation [Seite 215]
14.1.5.2 - 1.4.1.5.2 Alkene/Oxygen [2 + 2 + 2] Cycloaddition [Seite 216]
14.2 - 1.4.2 Radical Cyclizations [Seite 223]
14.2.1 - 1.4.2.1 Tin-Mediated Radical Cyclizations [Seite 224]
14.2.1.1 - 1.4.2.1.1 Tin-Mediated Synthesis of Hexahydrofuropyrans [Seite 224]
14.2.1.2 - 1.4.2.1.2 Tin-Mediated Radical [3 + 2] Annulation [Seite 227]
14.2.2 - 1.4.2.2 Reductive Radical Domino Cyclizations [Seite 229]
14.2.2.1 - 1.4.2.2.1 Samarium(II) Iodide Mediated Radical Cyclizations [Seite 229]
14.2.2.2 - 1.4.2.2.2 Samarium(II) Iodide Mediated Radical-Anionic Cyclizations [Seite 232]
14.2.3 - 1.4.2.3 Oxidative Radical Cyclizations [Seite 234]
14.2.3.1 - 1.4.2.3.1 Organo-SOMO-Activated Polyene Cyclization [Seite 234]
14.2.3.2 - 1.4.2.3.2 Oxidative Rearrangement of Silyl Bis(enol ethers) [Seite 237]
14.2.3.3 - 1.4.2.3.3 Diastereoselective Oxidative Rearrangement of Silyl Bis(enol ethers) [Seite 240]
14.2.4 - 1.4.2.4 Visible-Light-Mediated Reactions [Seite 243]
14.2.4.1 - 1.4.2.4.1 Light-Mediated Radical Cyclization/Divinylcyclopropane Rearrangement [Seite 243]
14.2.4.2 - 1.4.2.4.2 Visible-Light-Mediated Radical Fragmentation and Bicyclization [Seite 247]
14.3 - 1.4.3 Tandem Radical Processes [Seite 253]
14.3.1 - 1.4.3.1 General and Specialized Reviews on Radical Cyclization Reactions [Seite 253]
14.3.2 - 1.4.3.2 A Brief History of Tandem Radical Cyclization Chemistry [Seite 254]
14.3.2.1 - 1.4.3.2.1 The Tandem Radical Cyclization Concept: Fused Rings [Seite 254]
14.3.2.2 - 1.4.3.2.2 The Biomimetic Tandem Radical Cyclization Postulate [Seite 255]
14.3.2.3 - 1.4.3.2.3 A Vinyl Radical Tandem Radical Cyclization: A Product with Linked Rings [Seite 255]
14.3.2.4 - 1.4.3.2.4 Introduction to Selectivity: A Bridged Ring System [Seite 256]
14.3.3 - 1.4.3.3 Alternative Reagents for Cascade Initiation: Getting Away from Tin, 2,2'-Azobisisobutyronitrile, and Peroxides [Seite 257]
14.3.3.1 - 1.4.3.3.1 The Manganese(III) System [Seite 257]
14.3.3.2 - 1.4.3.3.2 The Titanium(III) System [Seite 258]
14.3.3.3 - 1.4.3.3.3 Using Silanes Rather than Stannanes [Seite 258]
14.3.3.3.1 - 1.4.3.3.3.1 Carboxyarylation [Seite 258]
14.3.3.3.2 - 1.4.3.3.3.2 Reactions Terminated by Azide [Seite 259]
14.3.3.4 - 1.4.3.3.4 Reactions with Borane Initiators [Seite 261]
14.3.3.4.1 - 1.4.3.3.4.1 Tin Hydrides with Triethylborane for Initiation and Fragmentation with Samarium(II) Iodide [Seite 261]
14.3.3.4.2 - 1.4.3.3.4.2 Triethylborane-Mediated Atom Transfer and Cobaloxime-Initiated Reductive Tandem Cyclization [Seite 263]
14.3.3.4.3 - 1.4.3.3.4.3 Tri-sec-butylborane/Oxygen/Tris(trimethylsilyl)silane Induced Reductive Cyclization [Seite 264]
14.3.4 - 1.4.3.4 Nitrogen- and Oxygen-Centered Radicals [Seite 265]
14.3.5 - 1.4.3.5 Intramolecular Plus Intermolecular Pathways [Seite 267]
14.3.5.1 - 1.4.3.5.1 Cyclization/Trapping [Seite 267]
14.3.5.2 - 1.4.3.5.2 Trapping/Cyclization [Seite 272]
14.3.6 - 1.4.3.6 Intermolecular Trapping/Trapping Pathways [Seite 273]
14.3.7 - 1.4.3.7 Conclusions [Seite 274]
15 - 1.5 Non-Radical Skeletal Rearrangements [Seite 279]
15.1 - 1.5.1 Protic Acid/Base Induced Reactions [Seite 279]
15.1.1 - 1.5.1.1 Intramolecular Epoxide-Opening Cyclizations [Seite 280]
15.1.1.1 - 1.5.1.1.1 Protic Acid Induced Intramolecular Epoxide Openings [Seite 281]
15.1.1.1.1 - 1.5.1.1.1.1 exo Epoxide Ring Expansions [Seite 282]
15.1.1.1.2 - 1.5.1.1.1.2 endo Epoxide Ring Expansions [Seite 284]
15.1.1.2 - 1.5.1.1.2 Base-Induced Intramolecular Epoxide Openings [Seite 286]
15.1.2 - 1.5.1.2 Carbocyclic Ring Expansions/Ring Contractions [Seite 288]
15.1.2.1 - 1.5.1.2.1 Acid-Induced Carbocyclic Ring Expansions/Ring Contractions [Seite 288]
15.1.2.1.1 - 1.5.1.2.1.1 Wagner-Meerwein Rearrangements [Seite 290]
15.1.2.1.1.1 - 1.5.1.2.1.1.1 Ring-Expansion Rearrangements [Seite 290]
15.1.2.1.1.2 - 1.5.1.2.1.1.2 Ring-Contraction Rearrangements [Seite 291]
15.1.2.1.2 - 1.5.1.2.1.2 Pinacol Rearrangements [Seite 292]
15.1.2.1.3 - 1.5.1.2.1.3 Semipinacol Rearrangements [Seite 294]
15.1.2.2 - 1.5.1.2.2 Base-Induced Carbocyclic Ring Expansions/Ring Contractions [Seite 295]
15.1.2.2.1 - 1.5.1.2.2.1 Benzilic Acid Rearrangements [Seite 295]
15.1.2.2.2 - 1.5.1.2.2.2 Retro-Benzilic Acid Rearrangements [Seite 296]
15.1.2.2.3 - 1.5.1.2.2.3 Favorskii Rearrangements [Seite 297]
15.1.2.2.3.1 - 1.5.1.2.2.3.1 Homo-Favorskii Rearrangements [Seite 299]
15.1.2.2.4 - 1.5.1.2.2.4 a-Hydroxy Ketone Rearrangements [Seite 299]
15.2 - 1.5.2 Lewis Acid/Base Induced Reactions [Seite 305]
15.2.1 - 1.5.2.1 Ring Expansions [Seite 305]
15.2.1.1 - 1.5.2.1.1 Semipinacol Rearrangement of 2,3-Epoxy Alcohols and Their Derivatives [Seite 305]
15.2.1.2 - 1.5.2.1.2 Reductive Rearrangement of 2,3-Epoxy Alcohols with Aluminum Triisopropoxide [Seite 308]
15.2.1.3 - 1.5.2.1.3 Tandem Semipinacol/Schmidt Reaction of a-Siloxy Epoxy Azides [Seite 309]
15.2.1.4 - 1.5.2.1.4 Prins-Pinacol Rearrangement [Seite 313]
15.2.2 - 1.5.2.2 Ring Contractions [Seite 318]
15.2.2.1 - 1.5.2.2.1 Rearrangement of Epoxides [Seite 318]
15.2.2.2 - 1.5.2.2.2 Favorskii Rearrangement and Quasi-Favorskii Rearrangement [Seite 322]
15.2.3 - 1.5.2.3 Ring Closures [Seite 325]
15.2.3.1 - 1.5.2.3.1 Induction by an Electrophilic Step [Seite 325]
15.2.3.1.1 - 1.5.2.3.1.1 Initiation by Epoxide Ring Opening [Seite 326]
15.2.3.1.1.1 - 1.5.2.3.1.1.1 Termination with a Carbon Nucleophile [Seite 326]
15.2.3.1.1.2 - 1.5.2.3.1.1.2 Termination with an Oxygen Nucleophile [Seite 333]
15.2.3.1.1.3 - 1.5.2.3.1.1.3 Termination with a Rearrangement [Seite 336]
15.2.3.1.1.4 - 1.5.2.3.1.1.4 Termination with a Pericyclic Reaction [Seite 341]
15.2.3.1.2 - 1.5.2.3.1.2 Initiation with a Carbonyl and Its Derivatives [Seite 342]
15.2.3.1.2.1 - 1.5.2.3.1.2.1 Termination with a Nucleophile [Seite 343]
15.2.3.1.2.2 - 1.5.2.3.1.2.2 Termination with a Rearrangement [Seite 352]
15.2.3.1.3 - 1.5.2.3.1.3 Initiation by Activation of a p-Bond [Seite 354]
15.2.3.1.3.1 - 1.5.2.3.1.3.1 Initiation by a Lewis Acid [Seite 354]
15.2.3.1.3.2 - 1.5.2.3.1.3.2 Initiation by a p-Acid [Seite 357]
15.2.3.1.3.2.1 - 1.5.2.3.1.3.2.1 Activation of Alkenes [Seite 357]
15.2.3.1.3.2.2 - 1.5.2.3.1.3.2.2 Activation of Alkynes [Seite 364]
15.2.3.2 - 1.5.2.3.2 Induction by a Pericyclic Reaction [Seite 374]
15.2.3.3 - 1.5.2.3.3 Induction by a Nucleophilic Step [Seite 380]
15.3 - 1.5.3 Brook Rearrangement as the Key Step in Domino Reactions [Seite 391]
15.3.1 - 1.5.3.1 1,2-Brook Rearrangement [Seite 392]
15.3.1.1 - 1.5.3.1.1 1,2-Brook Rearrangement with Aldehydes, Ketones, or Acyl Chlorides [Seite 392]
15.3.1.2 - 1.5.3.1.2 1,2-Brook Rearrangement with Acylsilanes [Seite 394]
15.3.1.2.1 - 1.5.3.1.2.1 Domino Reactions of Acylsilanes by Addition of Nucleophiles [Seite 394]
15.3.1.2.2 - 1.5.3.1.2.2 Domino Reactions of Acylsilanes Initiated by Nucleophiles Acting as Catalysts [Seite 413]
15.3.1.2.3 - 1.5.3.1.2.3 Domino Reactions of Acylsilanes Initiated by Enolization [Seite 416]
15.3.1.3 - 1.5.3.1.3 1,2-Brook Rearrangement with a-Silyl Carbinols [Seite 417]
15.3.1.4 - 1.5.3.1.4 1,2-Brook Rearrangement with Epoxy Silanes [Seite 418]
15.3.1.5 - 1.5.3.1.5 Miscellaneous Examples of 1,2-Brook Rearrangement [Seite 422]
15.3.1.6 - 1.5.3.1.6 Retro-1,2-Brook Rearrangement [Seite 423]
15.3.2 - 1.5.3.2 1,3-Brook Rearrangement [Seite 428]
15.3.2.1 - 1.5.3.2.1 Addition of Silyl-Substituted Stabilized Organolithium Agents to Carbonyl Groups [Seite 429]
15.3.2.2 - 1.5.3.2.2 1,3-Brook Rearrangement at sp2-Hybridized Carbon Atoms [Seite 435]
15.3.2.3 - 1.5.3.2.3 1,3-Brook Rearrangement Accompanied by ß-Elimination [Seite 435]
15.3.2.4 - 1.5.3.2.4 Carbon to Nitrogen Rearrangement [Seite 436]
15.3.2.5 - 1.5.3.2.5 Carbon to Sulfur Rearrangement [Seite 437]
15.3.2.6 - 1.5.3.2.6 Retro-1,3-Brook Rearrangement [Seite 438]
15.3.3 - 1.5.3.3 1,4-Brook Rearrangement [Seite 439]
15.3.3.1 - 1.5.3.3.1 1,4-Brook Rearrangement of Silyl-Substituted Carbanions with Epoxides [Seite 440]
15.3.3.2 - 1.5.3.3.2 1,4-Brook Rearrangement with Dihalosilyl-Substituted Methyllithium [Seite 452]
15.3.3.3 - 1.5.3.3.3 1,4-Brook Rearrangement with Allylsilanes [Seite 453]
15.3.3.4 - 1.5.3.3.4 1,4-Brook Rearrangement with Silylated Benzaldehydes [Seite 458]
15.3.3.5 - 1.5.3.3.5 1,4-Brook Rearrangement with Vinylsilanes [Seite 462]
15.3.3.6 - 1.5.3.3.6 Sulfur to Oxygen Rearrangement [Seite 466]
15.3.3.7 - 1.5.3.3.7 Retro-1,4-Brook Rearrangement [Seite 467]
15.3.4 - 1.5.3.4 Applications in the Total Synthesis of Natural Products [Seite 468]
15.3.4.1 - 1.5.3.4.1 The 1,2-Brook Rearrangement in Natural Product Synthesis [Seite 468]
15.3.4.2 - 1.5.3.4.2 The 1,4-Brook Rearrangement in Natural Product Synthesis [Seite 469]
15.3.4.2.1 - 1.5.3.4.2.1 Synthesis of Polyketides [Seite 469]
15.3.4.2.2 - 1.5.3.4.2.2 Synthesis of Terpenes [Seite 478]
15.3.4.2.3 - 1.5.3.4.2.3 Synthesis of Alkaloids [Seite 478]
15.3.5 - 1.5.3.5 Conclusions [Seite 480]
16 - 1.6 Metal-Mediated Reactions [Seite 485]
16.1 - 1.6.1 Palladium-Mediated Domino Reactions [Seite 485]
16.1.1 - 1.6.1.1 Reactions Initiating with Alkenylpalladium Intermediates [Seite 485]
16.1.2 - 1.6.1.2 Reactions Initiating with Arylpalladium Species [Seite 509]
16.1.3 - 1.6.1.3 Reactions Initiating with Allylpalladium Intermediates [Seite 527]
16.1.4 - 1.6.1.4 Reactions Initiating with Allenylpalladium Intermediates [Seite 532]
16.1.5 - 1.6.1.5 Reactions Initiating with Alkylpalladium Intermediates [Seite 534]
16.1.6 - 1.6.1.6 Conclusions [Seite 541]
16.2 - 1.6.2 Dirhodium-Catalyzed Domino Reactions [Seite 547]
16.2.1 - 1.6.2.1 1-Sulfonyl-1,2,3-triazoles as (Azavinyl)carbene Precursors in Domino Reactions [Seite 548]
16.2.2 - 1.6.2.2 Dirhodium(II)-Catalyzed Generation of Rhodium-Carbenes from Cyclopropenes and Their Subsequent Reactions [Seite 552]
16.2.3 - 1.6.2.3 Dirhodium(II)-Catalyzed Carbene/Alkyne Metathesis [Seite 557]
16.2.4 - 1.6.2.4 Nitrene Cascade Reactions Catalyzed by a Dirhodium Complex [Seite 563]
16.2.5 - 1.6.2.5 Conclusions [Seite 568]
16.3 - 1.6.3 Gold-Mediated Reactions [Seite 571]
16.3.1 - 1.6.3.1 Gold-Catalyzed Annulations [Seite 571]
16.3.1.1 - 1.6.3.1.1 Using ortho-Alkynylbenzaldehydes [Seite 571]
16.3.1.2 - 1.6.3.1.2 Using Arylimines and Alkynes [Seite 574]
16.3.1.3 - 1.6.3.1.3 Using Alcohols and Dienes [Seite 574]
16.3.1.4 - 1.6.3.1.4 Using Carbonyl Compounds, Alkynes, and Nitrogen-Containing Compounds [Seite 576]
16.3.2 - 1.6.3.2 Gold-Catalyzed Domino Reactions via Addition of Carbon Nucleophiles to p-Electrophiles [Seite 578]
16.3.2.1 - 1.6.3.2.1 1,n-Enynes [Seite 578]
16.3.2.2 - 1.6.3.2.2 1,n-Diynes [Seite 581]
16.3.2.3 - 1.6.3.2.3 1,n-Allenenes [Seite 585]
16.3.2.4 - 1.6.3.2.4 1,n-Allenynes [Seite 586]
16.3.3 - 1.6.3.3 Gold-Catalyzed Domino Reactions via Addition of Heteroatom Nucleophiles to p-Electrophiles [Seite 587]
16.3.3.1 - 1.6.3.3.1 Addition of Nitrogen Nucleophiles to Alkynes [Seite 587]
16.3.3.2 - 1.6.3.3.2 Addition of Oxygen Nucleophiles to Alkynes and Allenes [Seite 588]
16.3.3.2.1 - 1.6.3.3.2.1 Alcohols as Nucleophiles [Seite 588]
16.3.3.2.2 - 1.6.3.3.2.2 Epoxides as Nucleophiles [Seite 589]
16.3.3.3 - 1.6.3.3.3 Addition of Heteroatom Nucleophiles to Alkenes [Seite 591]
16.3.4 - 1.6.3.4 Gold-Catalyzed Domino Reactions Involving the Rearrangement of Propargyl Esters [Seite 593]
16.3.4.1 - 1.6.3.4.1 Synthesis of a-Ylidene ß-Diketones [Seite 593]
16.3.4.2 - 1.6.3.4.2 Synthesis of Dienes [Seite 594]
16.3.4.3 - 1.6.3.4.3 Synthesis of a-Substituted Enones [Seite 597]
16.3.4.3.1 - 1.6.3.4.3.1 Synthesis of a-Halo-Substituted Enones [Seite 597]
16.3.4.3.2 - 1.6.3.4.3.2 Synthesis of a-Aryl-Substituted Enones [Seite 598]
16.3.4.4 - 1.6.3.4.4 Synthesis of Cyclopentenones [Seite 599]
16.3.4.5 - 1.6.3.4.5 Acetate Migration and Reaction with p-Electrophiles [Seite 600]
16.3.4.5.1 - 1.6.3.4.5.1 Acetate Migration and Reaction with Alkynes [Seite 600]
16.3.4.5.2 - 1.6.3.4.5.2 Acetate Migration and Reaction with Alkenes [Seite 601]
16.3.4.6 - 1.6.3.4.6 Acetate Migration and Ring-Opening Reactions [Seite 602]
16.3.4.6.1 - 1.6.3.4.6.1 Cyclopentannulations [Seite 602]
16.3.4.6.2 - 1.6.3.4.6.2 Cyclohexannulations [Seite 604]
16.3.4.6.3 - 1.6.3.4.6.3 Cycloheptannulations [Seite 605]
16.4 - 1.6.4 Rare Earth Metal Mediated Domino Reactions [Seite 613]
16.4.1 - 1.6.4.1 Addition to C=O or C=C-C=O as a Primary Step [Seite 614]
16.4.1.1 - 1.6.4.1.1 Aldol-Type Reactions [Seite 614]
16.4.1.2 - 1.6.4.1.2 1,4-Addition Reactions [Seite 618]
16.4.2 - 1.6.4.2 Addition to C=N or C=C-C=N as a Primary Step [Seite 619]
16.4.2.1 - 1.6.4.2.1 Strecker-Type Reactions [Seite 619]
16.4.2.2 - 1.6.4.2.2 Other Reactions Initiated by Imine Formation [Seite 620]
16.4.3 - 1.6.4.3 Enamine Formation as a Primary Step [Seite 625]
16.4.3.1 - 1.6.4.3.1 Enamines from ß-Keto Esters [Seite 625]
16.4.3.2 - 1.6.4.3.2 Enamines from Alkynes [Seite 626]
16.4.4 - 1.6.4.4 Ring-Opening or Ring-Closing Reactions as a Primary Step [Seite 628]
16.4.4.1 - 1.6.4.4.1 Ring-Opening Reactions [Seite 628]
16.4.4.2 - 1.6.4.4.2 Ring-Closing Reactions [Seite 630]
16.4.5 - 1.6.4.5 Rearrangement Reactions [Seite 632]
16.4.6 - 1.6.4.6 Miscellaneous Reactions [Seite 634]
16.4.6.1 - 1.6.4.6.1 Domino Reactions with Transition-Metal Catalysts [Seite 634]
16.5 - 1.6.5 Cobalt and Other Metal Mediated Domino Reactions: The Pauson-Khand Reaction and Its Use in Natural Product Total Synthesis [Seite 637]
16.5.1 - 1.6.5.1 Enyne-Based Pauson-Khand Reactions [Seite 642]
16.5.1.1 - 1.6.5.1.1 A Short Synthesis of Racemic 13-Deoxyserratine [Seite 642]
16.5.1.2 - 1.6.5.1.2 Total Synthesis of Paecilomycine A [Seite 642]
16.5.1.3 - 1.6.5.1.3 Stereoselective Total Syntheses of (-)-Magellanine, (+)-Magellaninone, and (+)-Paniculatine [Seite 643]
16.5.1.4 - 1.6.5.1.4 Concise, Enantioselective Total Synthesis of (-)-Alstonerine [Seite 644]
16.5.1.5 - 1.6.5.1.5 Pauson-Khand Approach to the Hamigerans [Seite 645]
16.5.1.6 - 1.6.5.1.6 Enantioselective Synthesis of (-)-Pentalenene [Seite 646]
16.5.1.7 - 1.6.5.1.7 Formal Synthesis of (+)-Nakadomarin A [Seite 647]
16.5.1.8 - 1.6.5.1.8 Diastereoselective Total Synthesis of Racemic Schindilactone A [Seite 648]
16.5.1.9 - 1.6.5.1.9 Asymmetric Total Synthesis of (-)-Huperzine Q [Seite 650]
16.5.1.10 - 1.6.5.1.10 Total Synthesis of (-)-Jiadifenin [Seite 651]
16.5.1.11 - 1.6.5.1.11 Total Synthesis of Penostatin B [Seite 653]
16.5.1.12 - 1.6.5.1.12 Total Synthesis of Racemic Pentalenolactone A Methyl Ester [Seite 653]
16.5.1.13 - 1.6.5.1.13 Asymmetric Total Synthesis of (+)-Fusarisetin A [Seite 654]
16.5.2 - 1.6.5.2 Heteroatom-Based Pauson-Khand Reaction [Seite 655]
16.5.2.1 - 1.6.5.2.1 Total Synthesis of Physostigmine [Seite 656]
16.5.2.2 - 1.6.5.2.2 Asymmetric Total Synthesis of Racemic Merrilactone A [Seite 657]
16.5.3 - 1.6.5.3 Allenic Pauson-Khand Reaction [Seite 658]
16.5.3.1 - 1.6.5.3.1 Total Synthesis of (+)-Achalensolide [Seite 659]
16.5.3.2 - 1.6.5.3.2 Synthesis of 6,12-Guaianolide [Seite 660]
16.5.3.3 - 1.6.5.3.3 Stereoselective Total Syntheses of Uncommon Sesquiterpenoids [Seite 661]
16.5.3.4 - 1.6.5.3.4 14-Step Synthesis of (+)-Ingenol from (+)-3-Carene [Seite 662]
16.5.4 - 1.6.5.4 Conclusions [Seite 663]
17 - Keyword Index [Seite 669]
18 - Author Index [Seite 705]
19 - Abbreviations [Seite 729]
Abstracts
1.1 Polyene Cyclizations
R. A. Shenvi and K. K. Wan
A domino transformation consists of a first chemical reaction enabling a second reaction, which can then effect a third reaction, and so on, all under the same reaction conditions. A polyene cyclization is defined as a reaction between two or more double bonds contained within the same molecule to form one or more rings via one or more C-C bond-forming events. Herein, domino polyene cyclizations are discussed, with an emphasis on operationally simple methods of broad utility. From the perspective of synthesis theory, polyene cyclizations are a powerful approach for the efficient generation of both complexity and diversity, with the potential for a single synthetic route to generate a series of both constitutional and stereochemical isomers. However, with some noteworthy exceptions, the ability to controllably cyclize a linear chain to multiple products with high selectivity still generally eludes synthetic chemists and represents a significant chemical frontier for further development.
Keywords: polyenes · cyclization · carbocations · radicals · polycycles
1.2 Cation-p Cyclizations of Epoxides and Polyepoxides
K. W. Armbrust, T. Halkina, E. H. Kelley, S. Sittihan, and T. F. Jamison
This chapter describes the formation of complex polycyclic fragments from linear epoxide and polyepoxide precursors via domino reactions. Depending on the reaction conditions employed, either exo or endo epoxide opening can be selectively achieved. Applications of these domino reactions toward the synthesis of complex natural products are discussed.
Keywords: oxiranes · cascades · natural products · marine ladder polyethers · ionophores · ethers · oxygen heterocycles · tetrahydrofurans · tetrahydropyrans · oxepanes
1.3.1 Enyne-Metathesis-Based Domino Reactions in Natural Product Synthesis
D. Lee and M. O'Connor
Enyne-metathesis-based domino processes are highlighted in the context of natural product synthesis; these include domino double ring-closing metathesis, enyne metathesis/metallotropic [1,3]-shifts, enyne metathesis/Diels-Alder reaction, and other variations of their domino combinations. Issues regarding selectivity and mechanism are also discussed.
Keywords: enyne metathesis · p-bond exchange · domino transformations · natural products · total synthesis
1.3.2 Domino Metathesis Reactions Involving Carbonyls
H. Renata and K. M. Engle
This review describes different methods to perform net carbonyl-alkene metathesis. Reactions of this type generally involve domino transformations employing organometallic reagents. Different conditions and procedures are surveyed and strategic applications of carbonyl-alkene metathesis in the synthesis of natural products are highlighted.
Keywords: metathesis · alkenylation · carbonyl compounds · alkenes · ring closure · transition metals · titanium complexes · organometallic reagents · organocatalysts
1.4.1 Peroxy Radical Additions
X. Hu and T. J. Maimone
In this chapter, radical addition reactions involving peroxy radical intermediates are reviewed. These transformations typically generate a carbon radical intermediate which then reacts with molecular oxygen forming a peroxy radical species. Following peroxy radical cyclization, various endoperoxide rings are constructed. Two major classes of reactions are discussed: (1) radical additions to alkenes and quenching with molecular oxygen, and (2) radical formation from the opening of cyclopropanes and incorporation of molecular oxygen. Various methods for radical initiation that are compatible with the presence of molecular oxygen are described.
Keywords: peroxide synthesis · endoperoxides · cyclic peroxides · radical addition · peroxy radicals · thiyl radicals · hydroperoxidation · cyclopropane cleavage · 1,2-dioxolanes · 1,2-dioxanes · 1,2-dioxepanes
1.4.2 Radical Cyclizations
J. J. Devery, III, J. J. Douglas, and C. R. J. Stephenson
This chapter details recent examples of domino radical reactions that are initiated via an intramolecular radical cyclization.
Keywords: radicals · domino reactions · cyclization · tin · samarium · organo-SOMO · ammonium cerium(IV) nitrate (CAN) · visible light
1.4.3 Tandem Radical Processes
K. A. Parker
This review presents selected examples of regio- and stereospecific domino radical reactions developed in the context of total synthesis studies. The underlying strategies demonstrate the variety of connectivity patterns that can be generated by cascades of intraand intermolecular bond-forming steps.
Keywords: tandem radical cyclization · radical domino cyclization · radical cascade cyclization · intermolecular reactions · radical trapping · manganese(III) acetate · titanocene dichloride · tris(trimethylsilyl)silane · triethylborane · tri-sec-butylborane · TEMPO · 1,1,3,3-tetramethylguanidine · samarium(II) iodide · cobaloxime
1.5.1 Protic Acid/Base Induced Reactions
D. Adu-Ampratwum and C. J. Forsyth
This chapter covers synthetic domino processes that are induced by protic acid or base. They are broadly classified into those that capitalize upon the release of oxirane ring strain under acidic or basic conditions, and carbocyclic ring expansions and contractions under protic acid or basic conditions. The focus here is upon single substrate, monocomponent domino processes, rather than multicomponent variants.
Keywords: carbocyclic compounds · cyclization · epoxy compounds · ethers · Favorskii rearrangement · intramolecular reactions · Nazarov cyclization · pinacol rearrangement · ring contraction · ring expansion · tandem reactions · Wagner-Meerwein rearrangement
1.5.2 Lewis Acid/Base Induced Reactions
S.-H. Wang, Y.-Q. Tu, and M. Tang
The efficient construction of complex molecular skeletons is always a hot topic in organic synthesis, especially in the field of natural product synthesis, where many cyclic structural motifs can be found. Under the assiduous efforts of synthetic chemists, more and more methodologies are being developed to achieve the construction of cyclic skeletons. In particular, the beauty and high efficiency of organic synthesis are expressed vividly among those transformations realized through a domino strategy. Based on these important methodologies, selected Lewis acid/base induced domino reactions leading to ring expansions, contractions, and closures are presented in this chapter.
Keywords: tandem reactions · Lewis acid · Lewis base · ring expansion · ring contraction · ring closure
1.5.3 Brook Rearrangement as the Key Step in Domino Reactions
A. Kirschning, F. Gille, and M. Wolling
The Brook rearrangement has lost its Cinderella status over the past twenty years since being embedded into cascade reaction sequences. The powerful formation of carbanions through silyl migration has been exploited for the development of many new methodologies and has been used as a key transformation in complex natural product syntheses. Now, the Brook rearrangement belongs to the common repertoire of synthetic organic chemists.
Keywords: Brook rearrangement · domino reactions · migration · organosilicon chemistry · total synthesis
1.6.1 Palladium-Mediated Domino Reactions
E. A. Anderson
Palladium catalysis offers excellent opportunities to engineer domino reactions, due to the ability of this transition metal to engage with a variety of electrophiles and to effect stereocontrolled bond formations in complex settings. This review covers palladium-catalyzed domino processes, categorized according to the initiating species (alkenyl-, aryl-, allyl-, allenyl-, or alkylpalladium complexes), with a particular focus on applications in natural product synthesis that exemplify more general methodology.
Keywords: palladium · domino · cascade · total synthesis
1.6.2 Dirhodium-Catalyzed Domino Reactions
X. Xu, P. Truong, and M. P. Doyle
With dirhodium carbenes generated from diazocarbonyl compounds, 1-sulfonyl-1,2,3-triazoles, or cyclopropenes, a subsequent intramolecular cyclization forms a reactive intermediate that undergoes a further transformation that usually terminates the reaction process. Commonly, the electrophilic dirhodium carbene adds intramolecularly to a C=C bond to provide a second rhodium carbene. Catalytically generated dirhodiumbound nitrenes initiate domino reactions analogously, and recent examples (nitrene to carbene to product) have also been documented.
Keywords: a-carbonyl carbenes ·...