Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
Diomedes E. Logothetis1; Rahul Mahajan; Scott K. Adney; Junghoon Ha; Takeharu Kawano; Xuan-Yu Meng2; Meng Cui Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA 1 Corresponding author: email address: delogothetis@vcu.edu 2 Present Addresses: School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
The question that started with the pioneering work of Otto Loewi in the 1920s, to identify how stimulation of the vagus nerve decreased heart rate, is approaching its 100th year anniversary. In the meantime, we have learned that the neurotransmitter acetylcholine acting through muscarinic M2 receptors activates cardiac potassium (Kir3) channels via the ß? subunits of G proteins, an important effect that contributes to slowing atrial pacemaker activity. Concurrent stimulation of M1 or M3 receptors hydrolyzes PIP2, a signaling phospholipid essential to maintaining Kir3 channel activity, thus causing desensitization of channel activity and protecting the heart from overinhibition of pacemaker activity. Four mammalian members of the Kir3 subfamily, expressed in heart, brain, endocrine organs, etc., are modulated by a plethora of stimuli to regulate cellular excitability. With the recent great advances in ion channel structural biology, three-dimensional structures of Kir3 channels with PIP2 and the Gß? subunits are now available. Mechanistic insights have emerged that explain how modulatory control of activity feeds into a core mechanism of channel-PIP2 interactions to regulate the conformation of channel gates. This complex but beautiful system continues to surprise us for almost 100 years with an apparent wisdom in its intricate design.
Keywords
Kir3 channels
GIRK channels
PIP2
Phosphatidylinositol bisphosphate
Gß?
G proteins
G-loop gate
Phosphorylation
Computational model
Crystal structure
In this review, we will present our current understanding of the control of Kir3 channel activity by phosphoinositides (PIPs) aided by other molecules, such as G proteins, with a historical perspective of its development.
When the vagus nerve is stimulated, chemical transmission of neural signals occurs via release of acetylcholine (ACh) to slow heart rate (Loewi, 1921; Loewi & Navratil, 1926). An increase in K+ conductance, KACh, found in atrial myocytes and cardiac pacemaking cells, underlies the hyperpolarization effect of ACh that precedes the decrease in heart rate (Burgen & Terroux, 1953; Trautwein & Dudel, 1958). With the advent of the patch-clamp technique (Hamill, Marty, Neher, Sakmann, & Sigworth, 1981), KACh single-channel characteristics were determined, showing short open times (1-2 ms) and a conductance of ~ 40 pS (Sakmann, Noma, & Trautwein, 1983). A year later it was shown that the effect of ACh on KACh channels is mediated locally, in a membrane-delimited fashion, and not by diffusible second messengers (Soejima & Noma, 1984). In their cell-attached experiments, Soejima and Noma perfused the inside of the pipette with solutions containing ACh to demonstrate that KACh activation would only occur when ACh was perfused in the patch pipette and not in the bath (Fig. 1). The ability to unequivocally identify KACh has led to hundreds of publications revealing multiple ways of controlling the activity of these important channels directly or allosterically through interactions of the channel protein with other regulatory proteins, metal ions, ethanol, and membrane lipids. In this review, we will focus on how fundamental protein-lipid interactions lie at the core of controlling the ion channel gates and how other modulatory signals feed onto this central control mechanism to adjust channel activity.
In 1985, several reports established the involvement of GTP-binding (G) proteins in transducing the ACh signal to KACh (Breitwieser & Szabo, 1985; Endoh, Maruyama, & Iijima, 1985; Pfaffinger, Martin, Hunter, Nathanson, & Hille, 1985; Sorota, Tsuji, Tajima, & Pappano, 1985). The involvement of G proteins to stimulate KACh in response to ACh was also demonstrated using excised membrane patches from atrial cells with ACh or adenosine on the external side of the patch and GTP on the cytoplasmic side, an effect prevented by prior pertussis toxin treatment of the cells (Kurachi, Nakajima, & Sugimoto, 1986). Purified G proteins applied to inside-out patches of atrial cell membranes could induce KACh activity (Yatani, Codina, Brown, & Birnbaumer, 1987). In fact, the ß? subunits of G proteins (Gß?) were found to be responsible for KACh activation, identifying the KACh channel as the first effector protein to be activated by nanomolar concentrations of the Gß? subunits (Logothetis, Kurachi, Galper, Neer, & Clapham, 1987). Later in the same year, it was reported that picomolar concentrations of active Ga subunits, activated with a nonhydrolyzable GTP analog (GTP?S), could induce KACh activation (Codina, Yatani, Grenet, Brown, & Birnbaumer, 1987), igniting a controversy that took several years to settle in favor of Gß?, which is now accepted as the stimulatory component of G proteins (Ito et al., 1992; Logothetis, Kim, Northup, Neer, & Clapham, 1988, Reuveny et al., 1994; Wickman et al., 1994; reviewed by Stanfield, Nakajima, & Nakajima, 2002). Yet, a role for Ga subunit in the regulation of KACh activity is not fully understood and has not been definitively excluded, as activated Ga has been reported by other labs to exhibit weak stimulatory (Ito et al., 1992; Logothetis et al., 1988) or inhibitory effects (Schreibmayer et al., 1996; Vivaudou et al., 1997). Chapter "The Roles of Gß? and Ga in Gating and Regulation of GIRK Channels" by Dascal and Kahanovitch explores in detail the role of Ga in regulating G protein-sensitive K+ channels.
In 1993, the first molecular component of KACh, Kir3.1 (also referred to as GIRK1), was cloned from heart cDNA libraries, either through PCR, using degenerate primers based on the related Kir2.1 (Kubo, Baldwin, Jan, & Jan, 1993) or by expression cloning in Xenopus oocytes (Dascal et al., 1993). Two additional cDNAs from a brain library were obtained by low stringency hybridization using Kir3.1 as the probe (Lesage et al., 1994). Kir3.2 (or GIRK2) and Kir3.3 (or GIRK3) are expressed mainly in the CNS (Jelacic, Sims, & Clapham, 1999; Lesage et al., 1994, 1995). In 1995, Kir3.4 (also referred to as GIRK4 or CIR) was identified as the second molecular component of KACh (Krapivinsky et al., 1995). Although Kir3.4 are expressed as homomers in heart (e.g., Bender et al., 2001; Corey & Clapham, 1998), it is their coexpression into heteromers with Kir3.1 that gives rise to a conductance that behaves like KACh both biophysically and in response to G protein subunit modulation. In the brain, Kir3 channels can exist as homomers (e.g., Kir3.2a and Kir3.2c: Inanobe et al., 1999). However, several neurons coexpress several Kir3 subunits (Kir3.1-Kir3.4) (e.g., Chen, Ehrhard, Goldowitz, & Smeyne, 1997; Cruz et al., 2004; Karschin, Dissmann, Stuhmer, & Karschin, 1996) and form multiple heteromeric combinations (e.g., Kir3.1/3.2: Inanobe et al., 1999; Liao, Jan, & Jan, 1996; Kir3.2/3.3: Cruz et al., 2004; Inanobe et al., 1999; Jelacic, Kennedy, Wickman, & Clapham, 2000; Kir3.2/3.4: Lesage et al., 1995; Spauschus et al., 1996; reviewed by Hibino et al., 2010). Although Kir3.1 expression alone yields nonfunctional channels mostly trapped in the endoplasmic reticulum, heteromeric combinations of Kir3.2 and Kir3.4 with Kir3.1 produce greatly enhanced currents compared to homomeric assemblies (Chan, Sui, Vivaudou, & Logothetis, 1996). Single point mutations on the pore helices of Kir3 channels have yielded high...
Dateiformat: ePUBKopierschutz: Adobe-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet – also für „fließenden” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!
Weitere Informationen finden Sie in unserer E-Book Hilfe.
Dateiformat: PDFKopierschutz: Adobe-DRM (Digital Rights Management)
Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.
Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!
Dateiformat: ePUBKopierschutz: Wasserzeichen-DRM (Digital Rights Management)
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet - also für „fließenden” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Wasserzeichen-DRM wird hier ein „weicher” Kopierschutz verwendet. Daher ist technisch zwar alles möglich – sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.