Preface; 1. Possible m-diagrams of models of arithmetic Andrew Arana; 2. Weak theories of nonstandard arithmetic and analysis Jeremy Avigad; 3. Notions of compactness in weak subsystems of second order arithmetic Douglas K. Brown; 4. Proof theoretic strength of the stable marriage theorem and other problems Douglas Cenzer and Jeffrey B. Remmel; 5. Free sets and reverse mathematics Peter A. Cholak, Mariagnese Giusto, Jeffry L. Hirst and Carl G. Jockusch, Jr; 6. Interpreting arithmetic in the r.e. degrees under ?4-induction C. T. Chong, Richard A. Shore and Yue Yang; 7. Reverse mathematics, Archimedean classes, and Hahn's theorem Rodney G. Downey and Reed Solomon; 8. The Baire category theorem over a feasible base theory Antonio M. Fernandes; 9. Basic applications of weak Koenig's lemma in feasible analysis Antonio M. Fernandes and Fernando Ferreira; 10. Maximal nonfinitely generated subalgebras Harvey M. Friedman; 11. Metamathematics of comparability Harvey M. Friedman; 12. A note on compactness of countable sets Jeffry L. Hirst; 13. A survey of the reverse mathematics of ordinal arithmetic Jeffry L. Hirst; 14. Reverse mathematics and ordinal suprema Jeffry L. Hirst; 15. Did Cantor need set theory? A. James Humphreys; 16. Models of arithmetic: quantifiers and complexity Julia F. Knight; 17. Higher order reverse mathematics Ulrich Kohlenbach; 18. Arithmetic saturation Roman Kossak; 19. WQO and BQO theory in subsystems of second order arithmetic Alberto Marcone; 20. Reverse mathematics and graph coloring: eliminating diagonalization James H. Schmerl; 21. Undecidable theories and reverse mathematics James H. Schmerl; 22. ?01 and models of WKL0 Stephan G. Simpson; 23. Manipulating the reals in RCA0 Kazuyuki Tanaka and Takeshi Yamazaki; 24. Reverse mathematics and weak systems of 0-1 strings for feasible analysis Takeshi Yamazaki.