Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
This work presents the guiding principles of Integral Transforms needed for many applications when solving engineering and science problems. As a modern approach to Laplace Transform, Fourier series and Z-Transforms it is a valuable reference for professionals and students alike.
The Laplace transform, named after its inventor Pierre-Simon Laplace, is an integral transform. Laplace transform converts a function of a real variable (often time) to a function of a complex variable (complex frequency).
Laplace transforms are useful to solve linear ordinary differential equations and analyze frequency response and stability analysis. Process control feedback loops and their response properties and stability can thus be conveniently analyzed in the Laplace domain.
Also, depending on the boundary conditions of your problem, it can be judicious to use a Laplace transform to solve the diffusion equation, heat transfer equation, and Navier-Stokes. So, Laplace transforms will show up in many core engineering curricula, for example, mass transport, heat transport, fluid transport, and process controls. For the basic concepts of Laplace transform and its applications, one can refer to [2-6, 8, 9, 13, 14].
As we have explained in Introduction, the integral transform of function ft in the interval a=x=b is given by,
where -8=a<b=8
Let ft be a function defined for t=0 0=t=8 and kernel Kt,s=e-st and then eq. (1.1) will be called Laplace transform under certain conditions to be explained later.
Thus, the Laplace transform of function ft which is defined for t=0 (t is real variable), is formally defined as follows:
where s is the transform variable, which is a complex number.
Figure 1.1: The Laplace transforms as a mapping.
Therefore, the Laplace transform converts time domain functions and operations into frequency domain ftFs t?R, s?CasshowninFigure1.1.
Find the Laplace transform ft=1 for t=0.
We know that Lft=?08e-stftdt
Here, ft=1:
?L1=1-s0-1=1s=Fs Thus, L1=1s, s>0.
Find the Laplace transform of f(t)=eat for t=0, where "a" is a constant.
Here f(t)=eat
Thus, Leat=1s-a, s>a.
Note: Similarly, Le-at=1s+a, s>-a.
Find the Laplace transform of ft=sinat, where "a" is a real constant.
We know that
Now, ft=sinat and Lft= ?08e-stft dt
Thus, Lsinat=as2+a2.
Find the Laplace transform of ft=cosat, where "a" is a real constant.
Now, ft=cosat and Lft=?08e-stft dt ,
Thus, Lcosat=ss2+a2.
Functions f1t and f2t have Laplace transforms F1s and F2s, respectively.
Also, if c1 and c2 are any constants, then,
Proof. We know that
Now,
Find the Laplace transform of ft=sinhat, where "a" is a real constant.
(by linearity property)
Thus, Lsinhat=as2-a2
Find the Laplace transform of ft=coshat, where "a" is a real constant.
Thus, Lcoshat=ss2-a2.
Note
The gamma function is defined by the improper integral ?08e-xxn-1 dx=|n? for n>0
If n is a positive integer, then |n+1?=n!
|n+1?=n|n?
Dateiformat: ePUBKopierschutz: Wasserzeichen-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet - also für „fließenden” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Wasserzeichen-DRM wird hier ein „weicher” Kopierschutz verwendet. Daher ist technisch zwar alles möglich – sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.
Weitere Informationen finden Sie in unserer E-Book Hilfe.