Map No. 1.
Our star map No. 1 will serve as a guide to the objects which we are about to inspect. Let us begin operations with our smallest telescope, the three-inch. I may remark here that, just as the lowest magnifying power that will clearly reveal the object looked for gives ordinarily better results than a higher power, so the smallest telescope that is competent to show what one wishes to see is likely to yield more satisfaction, as far as that particular object is concerned, than a larger glass. The larger the object glass and the higher the power, the greater are the atmospheric difficulties. A small telescope will perform very well on a night when a large one is helpless.
Turn the glass upon ß (Rigel), the white first-magnitude star in Orion's left foot. Observe whether the image with a high power is clear, sharp, and free from irregular wisps of stray light. Look at the rings in and out of focus, and if you are satisfied with the performance, try for the companion. A good three-inch is certain to show it, except in a bad state of the atmosphere, and even then an expert can see it, at least by glimpses. The companion is of the ninth magnitude, some say the eighth, and the distance is about 9.5", angle of position (hereafter designated by p.) 199°.[1] Its color is blue, in decided contrast with the white light of its great primary. Sir John Herschel, however, saw the companion red, as others have done. These differences are doubtless due to imperfections of the eye or the telescope. In 1871 Burnham believed he had discovered that the companion was an exceedingly close double star. No one except Burnham himself succeeded in dividing it, and he could only do so at times. Afterward, when he was at Mount Hamilton, he tried in vain to split it with the great thirty-six-inch telescope, in 1889, 1890, and 1891. His want of success induced him to suggest that the component stars were in rapid motion, and so, although he admitted that it might not be double after all, he advised that it should be watched for a few years longer. His confidence was justified, for in 1898 Aitken, with the Lick telescope, saw and measured the distance of the extremely minute companion-distance 0.17", p. 177°.
Rigel has been suspected of a slight degree of variability. It is evidently a star of enormous actual magnitude, for its parallax escapes trustworthy measurement. It can only be ranked among the very first of the light-givers of the visible universe. Spectroscopically it belongs to a peculiar type which has very few representatives among the bright stars, and which has been thus described: "Spectra in which the hydrogen lines and the few metallic lines all appear to be of equal breadth and sharp definition." Rigel shows a line which some believe to represent magnesium; but while it has iron lines in its spectrum, it exhibits no evidence of the existence of any such cloud of volatilized iron as that which helps to envelop the sun.
For another test of what the three-inch will do turn to ?, the lower, or left-hand, star in the Belt. This is a triple, the magnitudes being second, sixth, and tenth. The sixth-magnitude star is about 2.5" from the primary, p. 149°, and has a very peculiar color, hard to describe. It requires careful focusing to get a satisfactory view of this star with a three-inch telescope. Use magnifying powers up to two hundred and fifty diameters. With our four-inch the star is much easier, and the five-inch shows it readily with a power of one hundred. The tenth-magnitude companion is distant 56", p. 8°, and may be glimpsed with the three-inch. Upon the whole, we shall find that we get more pleasing views of ? Orionis with the four-inch glass.
Just to the left of ?, and in the same field of view with a very low power, is a remarkable nebula bearing the catalogue number 1227. We must use our five-inch on this with a low power, but with ? out of the field in order to avoid its glare. The nebula is exceedingly faint, and we can be satisfied if we see it simply as a hazy spot, although with much larger telescopes it has appeared at least half a degree broad. Tempel saw several centers of condensation in it, and traced three or four broad nebulous streams, one of which decidedly suggested spiral motion.
The upper star in the Belt, d, is double; distance, 53", p. 360°; magnitudes, second and seventh very nearly; colors, white and green or blue. This, of course, is an easy object for the three-inch with a low magnifying power. It would be useless to look for the two fainter companions of d, discovered by Burnham, even with our five-inch glass. But we shall probably need the five-inch for our next attempt, and it will be well to put on a high power, say three hundred diameters. The star to be examined is the little brilliant dangling below the right-hand end of the Belt, toward Rigel. It appears on the map as ?. Spare no pains in getting an accurate focus, for here is something worth looking at, and unless you have a trained eye you will not easily see it. The star is double, magnitudes third and sixth, and the distance from center to center barely exceeds 1", p. 87°. A little tremulousness of the atmosphere for a moment conceals the smaller star, although its presence is manifest from the peculiar jutting of light on one side of the image of the primary. But in an instant the disturbing undulations pass, the air steadies, the image shrinks and sharpens, and two points of piercing brightness, almost touching one another, dart into sight, the more brilliant one being surrounded by an evanescent circle, a tiny ripple of light, which, as it runs round the star and then recedes, alternately embraces and releases the smaller companion. The wash of the light-waves in the atmosphere provokes many expressions of impatience from the astronomer, but it is often a beautiful phenomenon nevertheless.
Between ? and d is a fifth-magnitude double star, S 725, which is worth a moment's attention. The primary, of a reddish color, has a very faint star, eleventh magnitude, at a distance of 12.7", p. 88°.
Still retaining the five-inch in use, we may next turn to the other end of the Belt, where, just under ?, we perceive the fourth-magnitude star s. He must be a person of indifferent mind who, after looking with unassisted eyes at the modest glimmering of this little star, can see it as the telescope reveals it without a thrill of wonder and a cry of pleasure. The glass, as by a touch of magic, changes it from one into eight or ten stars. There are two quadruple sets three and a half minutes of arc apart. The first set exhibits a variety of beautiful colors. The largest star, of fourth magnitude, is pale gray; the second in rank, seventh magnitude, distance 42", p. 61°, presents a singular red, "grape-red" Webb calls it; the third, eighth magnitude, distance 12", p. 84°, is blue; and the fourth, eleventh magnitude, distance 12", p. 236°, is apparently white. Burnham has doubled the fourth-magnitude star, distance 0.23". The second group of four stars consists of three of the eighth to ninth magnitude, arranged in a minute triangle with a much fainter star near them. Between the two quadruple sets careful gazing reveals two other very faint stars. While the five-inch gives a more satisfactory view of this wonderful multiple star than any smaller telescope can do, the four-inch and even the three-inch would have shown it to us as a very beautiful object. However we look at them, there is an appearance of association among these stars, shining with their contrasted colors and their various degrees of brilliance, which is significant of the diversity of conditions and circumstances under which the suns and worlds beyond the solar walk exist.
From s let us drop down to see the wonders of Orion's Sword displayed just beneath. We can use with advantage any one of our three telescopes; but since we are going to look at a nebula, it is fortunate that we have a glass so large as five inches aperture. It will reveal interesting things that escape the smaller instruments, because it grasps more than one and a half times as much light as the four-inch, and nearly three times as much as the three-inch; and in dealing with nebulæ a plenty of light is the chief thing to be desired. The middle star in the Sword is ?, and is surrounded by the celebrated Nebula of Orion. The telescope shows ? separated into four stars arranged at the corners of an irregular square, and shining in a black gap in the nebula. These four stars are collectively named the Trapezium. The brightest is of the sixth magnitude, the others are of the seventh, seven and a half, and eighth magnitudes respectively. The radiant mist about them has a faint greenish tinge, while the four stars, together with three others at no great distance, which follow a fold of the nebula like a row of buttons on a coat, always appear to me to show an extraordinary liveliness of radiance, as if the strange haze served to set them off.
The Trapezium with the Fifth and Sixth Stars. Our three-inch would have shown the four stars of the Trapezium perfectly well, and the four-inch would have revealed a fifth star, very faint, outside a line joining the smallest of the four and its nearest neighbor. But the five-inch goes a step farther and enables us, with steady gazing to see even a sixth star, of only the twelfth magnitude, just outside the Trapezium, near the brightest member of the quartet. The Lick telescope has disclosed one or two other minute points of light associated with the Trapezium. But more interesting than the Trapezium is the vast cloud, full of strange shapes, surrounding it. Nowhere else in the heavens is the architecture of a nebula so clearly displayed. It is an...