Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
This book focuses on the recent developments and novel applications of bioinspired and biomimetic nanostructures as functionally advanced biomolecules with huge prospects for research, development, and engineering industries. The population explosion, automation and urbanization have had numerous harsh environmental effects that have ultimately led to climate change. Therefore, the future of the world depends on immediately investing our time and effort into advancing ideas on ways to restrict the use of hazardous chemicals, thereby arresting further environmental degradation. To achieve this goal, nanotechnology has been an indispensable arena which has extended its wings into every aspect of modernization. For example, green synthetic protocols are being extensively researched to inhibit the harmful effects of chemical residues and reduce chemical wastes. This involves the study of nanotechnology for artful engineering at the molecular level across multiple disciplines. In recent years, nanotechnology has ventured away from the confines of the laboratory and has been able to conquer new domains to help us live better lives.
The green synthetic techniques produce nanostructures that generally possess unique properties that set them apart from those produced using physicochemical techniques. In addition to being eco-friendly, economic, and appropriate for mass production, these nanostructures possess diverse chemical, optical, mechanical, and magnetic properties as compared to bulk materials because of the increase in the surface area. An influential tenet of nanotechnology is the fabrication of nanoscale materials as well as their controlled morphology and dimensions. Learning from nature has given us different ways to address problems that arise when developing novel materials, which are known as biologically inspired and biomimetic strategies. These strategies, which rely on learning from surrounding entities, have experienced an unprecedented surge in the last decade, spurred on by advances in nanoscience and technology. Globally, the scientific community has recognized the prospects of an environmental catastrophe, and equitably providing clean air, food, water, and sustainable sources of energy is a matter of major concern. In the next 30 years, the desire for sustainable green alternatives is anticipated to double; therefore, the interdisciplinary holistic approaches pushing the idea of turning waste into profit require special emphasis.
In pursuit of a sustainable and eco-friendly abode, research focusing on the green synthesis of materials has revolutionized the design, development, and application of chemical products. Meticulous efforts for minimal waste products, synthesis of recyclable materials, and energy conservation have led to the research and discovery of ingenious strategies. Currently, green nanostructure synthesis is becoming extremely prevalent because it is safe and works well with living things. Green synthesis is merely a simplification of so-called logic that surpasses the fundamental concepts and techniques of synthesis. Therefore, the significance of green nanostructure synthesis must be examined in terms of how it is produced, its quality, and potential applications. The application of nanotechnology has enabled us to develop bioinspired materials using unique structures which can result in desired properties. With our increasing awareness of the scarcity of resources and surging pollution, there is a growing push towards the development of more bioinspired materials with better sustainability. As a result, they are growing in popularity, which makes studying them, their properties, and their fabrication techniques extremely important. Many bioinspired materials have already been developed that show great promise in solving many of our problems. But on the road to mass production, there are still some obstacles that are yet to be overcome. This book provides detailed coverage of the chemistry of each major class of synthesis of bioinspired nanostructures and their multiple functionalities. In addition, it reviews the new findings currently being introduced, and analyzes the various green synthetic approaches for developing nanostructures, their distinctive characteristics, and their applications.
Chapter 1 focuses on the synthesis and application of the nanostructures categorized as reliable, eco-friendly, and sustainable that have sparked a drive to develop environmentally acceptable methods. Hence, greener ways of identifying the biomolecules present in plants that mediate the formation of nanostructures, along with their production, testing and applications are also discussed.
Next, Chapter 2 discusses the limitations of existing nanotechnology-based methods to produce nanostructure and why we need the green nanoscience approach to overcome these limitations. The advantages of greener nanoscience have been described together with the processes for green nanostructure synthesis and the design and optimization of green processes to reduce or eliminate environmental and health hazards.
Chapter 3 gives the reader an insight into the mechanisms underlying different green nanofabrication techniques and the effect of various factors in the fabrication process. Statistical models and other in-silico approaches are frequently employed along with experimental data to ease the optimization. Although these techniques remain valid in optimizing the green synthesis of any nanomaterial, this chapter attempts to review the related reports and recent advancements in the field of cancer theranostics.
Chapter 4 evaluates the emerging nanomaterials possessing copious applications due to their nature and biological compatibility, high synthesis rate, stability, selectivity, sensitivity, and so on. Along the same lines, the practicality of biogenically developed nanostructure for biomedical applications, which has been recently ameliorated, is explored. This chapter also recounts sustainable approaches to effectively engineer nanostructures biogenically to be applied in demanding situations and applications.
A green synthesis strategy furnishes safe, clean and environment-friendly methodology to produce metallic nanoparticles. There is great demand for developing new protocols to enable the cost-effective and high-yield production of nanoparticle comparable to conventional methods. A significant step toward this would be improving eco-friendly processes for the creation of metallic nanoparticles. Thus, Chapter 5 is designed to explain the method of green synthesis, and the effects of various parameters on the size, morphology, and amount of metal nanoparticles produced.
The goal of Chapter 6 is to provide a brief overview of the variety of algal strains used in this booming field and the factors affecting them, along with the disparate nanocomposites synthesized.
The objective of Chapter 7 is to frame extensive guidelines and regulations based on the knowledge already available in the area of bioinspired "green" nanoparticles and implemented for the safe and efficient use of nanoparticles in farming, agriculture, and other botanical practices, aimed at the restoration of the delicate balance between living organisms and the environment.
Biogenic reduction of metal salts generally results in nanostructures possessing unique properties compared to those produced using physicochemical techniques. Thus, green synthetic techniques are eco-friendly, economic and appropriate for mass production. Chapter 8 provides a detailed review and analysis of the various green synthetic approaches for developing nanostructures, their distinctive characteristics and their applications. It also highlights the applications and improved properties of the nanostructures obtained using green synthesis.
Chapter 9 attempts to explain the advances in biomimetic and bioinspired nanostructures and present them as promising solutions to many unresolved problems in the biomedical field. Biomimetic nanostructures regulate the cell behavior reported in in-vitro studies, where they play an important role in cell nuclear alignment, cell spreading, cell differentiation, phagocytosis, and viability. Here, recent developments in the preparation of bioinspired and biomimetic nanostructures through different routes of synthesis are presented. The different templates used for the synthesis of nanostructures and binding the template with other useful materials to enhance the therapeutic efficacy are also discussed.
The recent trends in nano-functional materials and renewable materials for the preparation of bioinspired nanocomposites especially used in the agricultural, biomedical and healthcare sectors are discussed in Chapter 10.
Chapter 11 systematically discusses the recent development of bio-piezo-electric materials based on natural or nature-inspired biomolecules, with an emphasis on the design strategy, synthesis, integration into bio-piezoelectric platforms and finally their deployment in the latest biomedical applications.
Chapter 12 provides various ideas for designing nanoscale structures with targeted delivery ability which can be used in various applications, including therapeutics that may sound like science fiction.
Various green synthesis techniques and the contribution of green nanostructures in a variety of applications are highlighted in Chapter 13. The goal of this chapter is to provide a brief overview of the different green nanostructures used in this emerging field.
In Chapter 14, the industrial relevance of bioinspired materials is highlighted by focusing on the fields of optics, energy and...
Dateiformat: ePUBKopierschutz: Adobe-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet – also für „fließenden” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!
Weitere Informationen finden Sie in unserer E-Book Hilfe.