Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
The fourth edition of The Physics of Clinical MR Taught Through Images
The Physics of Clinical MR Taught Through Images Fourth Edition by Val Runge, Wolfgang Nitz, and Johannes Heverhagen presents a unique and highly practical approach to understanding the physics of magnetic resonance imaging. Each physics topic is described in user-friendly language and accompanied by high-quality graphics and/or images. The visually rich format provides a readily accessible tool for learning, leveraging, and mastering the powerful diagnostic capabilities of MRI.
Key Features
The breadth of coverage, rich visuals, and succinct text make this manual the perfect reference for radiology residents, practicing radiologists, researchers in MR, and technologists.
Section I. Hardware 1 Components of an MR Scanner2 MR Safety: Static Magnetic Field3 MR Safety: Gradient Magnetic and Radiofrequency Fields4 Radiofrequency Coils5 Multichannel Coil Technology: Part 16 Multichannel Coil Technology: Part 27 Open MR Systems8 Magnetic Field Effects At 3 T and Beyond9 Mid-Field, High-Field, and Ultra-High-Field (1.5, 3, 7 T)10 Advanced Receiver Coil Design11 Advanced Multidimensional RF Transmission Design Section II. Basic Imaging Physics 12 Imaging Basics: k-space, Raw Data, Image Data13 Image Resolution: Pixel and Voxel Size14 Imaging Basics: Signal-to-Noise Ratio15 Imaging Basics: Contrast-to-Noise Ratio16 Signal-to-Noise Ratio versus Contrast-to-Noise Ratio17 Signal-to-Noise Ratio in Clinical 3 T18 Slice Orientation19 Multislice Imaging and Concatenations20 Number of Averages21 Slice Thickness22 Slice Profile23 Slice Excitation Order (in Fast Spin Echo Imaging)24 Field of View (Overview)25 Field of View (Phase Encoding Direction)26 Matrix Size: Readout27 Matrix Size: Phase Encoding28 Partial Fourier29 Image Interpolation (Zero Filling)30 Specific Absorption Rate Section III. Basic Image Acquisition 31 T1, T2, and Proton Density32 Calculating T1 and T2 Relaxation Times (Calculated Images)33 Spin Echo Imaging34 Fast Spin Echo Imaging35 Fast Spin Echo: Reduced Refocusing Angle36 Driven-Equilibrium Fourier Transformation (DEFT)37 Reordering: Phase Encoding38 Magnetization Transfer39 Half Acquisition Single-Shot Turbo Spin Echo (HASTE)40 Spoiled Gradient Echo41 Refocused (Steady State) Gradient Echo42 Echo Planar Imaging43 Inversion Recovery: Part 144 Inversion Recovery: Part 245 Fluid-Attenuated IR with Fat Saturation (FLAIR FS)46 Fat Suppression: Spectral Saturation47 Water Excitation, Fat Excitation48 Fat Suppression: Short Tau Inversion Recovery (STIR)49 Fat Suppression: Phase Cycling50 Fat Suppression: Dixon51 3D Imaging: Basic Principles52 Contrast Media: Gadolinium Chelates with Extracellular Distribution53 Contrast Media: Gd Chelates with Improved Relaxivity54 Contrast Media: Other Agents (Non-Gadolinium) Section IV. Advanced Image Acquisition 55 Dual-Echo Steady State (DESS)56 Balanced Gradient Echo: Part 157 Balanced Gradient Echo: Part 258 PSIF: The Backward-Running FISP59 Constructive Interference in a Steady State (CISS)60 TurboFLASH61 PETRA (UTE)62 3D Imaging: MP-RAGE63 3D Imaging: SPACE64 Susceptibility-Weighted Imaging65 Volume Interpolated Breath-Hold Examination (VIBE)66 Diffusion-Weighted Imaging67 Multi-Shot EPI68 Diffusion Tensor Imaging69 Blood Oxygen Level-Dependent (BOLD) Imaging: Theory70 Blood Oxygen Level-Dependent (BOLD) Imaging: Applications71 Proton Spectroscopy (Theory)72 Proton Spectroscopy (Chemical Shift Imaging)73 Simultaneous Multislice Section V. Flow 74 Flow Effects: Fast and Slow Flow75 Phase Imaging: Flow76 2D Time-of-Flight MRA77 3D Time-of-Flight MRA78 Flip Angle, TR, MT, and Field Strength (in 3D TOF MRA)79 Phase Contrast MRA80 4D Flow MRI81 Advanced Non-Contrast MRA Techniques82 Contrast-Enhanced MRA: Basics; Renal, Abdomen83 Contrast-Enhanced MRA: Carotid Arteries84 Contrast-Enhanced MRA: Peripheral Circulation85 Dynamic CE-MRA (TWIST)86 Dynamic Susceptibility Perfusion Imaging87 Arterial Spin Labeling Section VI. Tissue-Specific Techniques 88 Brain Segmentation, Quantitative MR Imaging89 Cardiac Morphology90 Cardiac Function91 Cardiac Imaging: Myocardial Perfusion92 Cardiac Imaging: Myocardial Viability93 T1/T2/T2* Quantitative Parametric Mapping in the Heart94 MR Mammography: Dynamic Imaging95 MR Mammography: Silicone96 Hepatic Fat Quantification97 Hepatic Iron Quantification98 Elastography99 Magnetic Resonance Cholangiopancreatography (MRCP)100 Cartilage Mapping Section VII. Artifacts, Including Those Due to Motion, and the Reduction Thereof 101 Aliasing102 Truncation Artifacts103 Motion: Ghosting and Smearing104 Motion Reduction: Triggering, Gating, Navigator Echoes105 Abdomen: Motion Correction106 BLADE (PROPELLER)107 TWIST VIBE108 Radial VIBE (StarVIBE)109 GRASP110 Filtering Images (to Reduce Artifacts)111 Geometric Distortion112 Chemical Shift: Sampling Bandwidth113 Artifacts: Magnetic Susceptibility114 Maximizing Magnetic Susceptibility115 Artifacts: Metal116 Minimizing Metal Artifacts117 Gradient Moment Nulling118 Spatial Saturation119 Shaped Saturation120 Advanced Slice/Sub-Volume Shimming121 Flow Artifacts Section VIII. Further Improving Diagnostic Quality, Technologic Innovation 122 Faster and Stronger Gradients: Part 1123 Faster and Stronger Gradients: Part 2124 Faster and Stronger Gradients: Part 3125 Image Composing126 Filtering Images (to Improve SNR)127 Parallel Imaging: Part 1128 Parallel Imaging: Part 2129 CAIPIRINHA130 Zoomed EPI131 Compressed Sensing132 Cardiovascular Imaging: Compressed Sensing133 Interventional MR134 7 T Brain135 7 T Knee136 Continuous Moving Table137 Integrated Whole-Body MR-PET138 3D Evaluation: Image Post-Processing139 Automatic Image Alignment140 Workflow Optimization Section IX. Appendix 141 Acronyms
Dateiformat: PDFKopierschutz: Wasserzeichen-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Wasserzeichen-DRM wird hier ein „weicher” Kopierschutz verwendet. Daher ist technisch zwar alles möglich – sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.
Weitere Informationen finden Sie in unserer E-Book Hilfe.