Identifying, assessing, and mitigating electric power grid vulnerabilities is a growing focus in short-term operational planning of power systems. Through illustrated application, this important guide surveys state-of-the-art methodologies for the assessment and enhancement of power system security in short term operational planning and real-time operation. The methodologies employ advanced methods from probabilistic theory, data mining, artificial intelligence, and optimization, to provide knowledge-based support for monitoring, control (preventive and corrective), and decision making tasks.
Key features:
* Introduces behavioural recognition in wide-area monitoring and security constrained optimal power flow for intelligent control and protection and optimal grid management.
* Provides in-depth understanding of risk-based reliability and security assessment, dynamic vulnerability assessment methods, supported by the underpinning mathematics.
* Develops expertise in mitigation techniques using intelligent protection and control, controlled islanding, model predictive control, multi-agent and distributed control systems
* Illustrates implementation in smart grid and self-healing applications with examples and real-world experience from the WAMPAC (Wide Area Monitoring Protection and Control) scheme.
Dynamic Vulnerability Assessment and Intelligent Control for Power Systems is a valuable reference for postgraduate students and researchers in power system stability as well as practicing engineers working in power system dynamics, control, and network operation and planning.
Auflage
Sprache
Verlagsort
Dateigröße
ISBN-13
978-1-119-21497-7 (9781119214977)
Schweitzer Klassifikation
1 - Cover [Seite 1]
2 - Title Page [Seite 5]
3 - Copyright [Seite 6]
4 - Contents [Seite 7]
5 - List of Contributors [Seite 17]
6 - Foreword [Seite 21]
7 - Preface [Seite 23]
8 - Chapter 1 Introduction: The Role of Wide Area Monitoring Systems in Dynamic Vulnerability Assessment [Seite 27]
8.1 - 1.1 Introduction [Seite 27]
8.2 - 1.2 Power System Vulnerability [Seite 28]
8.2.1 - 1.2.1 Vulnerability Assessment [Seite 28]
8.2.2 - 1.2.2 Timescale of Power System Actions and Operations [Seite 30]
8.3 - 1.3 Power System Vulnerability Symptoms [Seite 31]
8.3.1 - 1.3.1 Rotor Angle Stability [Seite 32]
8.3.1.1 - 1.3.1.1 Transient Stability [Seite 32]
8.3.1.2 - 1.3.1.2 Oscillatory Stability [Seite 32]
8.3.2 - 1.3.2 Short?Term Voltage Stability [Seite 33]
8.3.3 - 1.3.3 Short?Term Frequency Stability [Seite 33]
8.3.4 - 1.3.4 Post?Contingency Overloads [Seite 33]
8.4 - 1.4 Synchronized Phasor Measurement Technology [Seite 34]
8.4.1 - 1.4.1 Phasor Representation of Sinusoids [Seite 34]
8.4.2 - 1.4.2 Synchronized Phasors [Seite 35]
8.4.3 - 1.4.3 Phasor Measurement Units (PMUs) [Seite 35]
8.4.4 - 1.4.4 Discrete Fourier Transform and Phasor Calculation [Seite 36]
8.4.5 - 1.4.5 Wide Area Monitoring Systems [Seite 36]
8.4.6 - 1.4.6 WAMPAC Communication Time Delay [Seite 38]
8.5 - 1.5 The Fundamental Role of WAMS in Dynamic Vulnerability Assessment [Seite 39]
8.6 - 1.6 Concluding Remarks [Seite 42]
8.7 - References [Seite 43]
9 - Chapter 2 Steady?State Security [Seite 47]
9.1 - 2.1 Power System Reliability Management: A Combination of Reliability Assessment and Reliability Control [Seite 48]
9.1.1 - 2.1.1 Reliability Assessment [Seite 49]
9.1.2 - 2.1.2 Reliability Control [Seite 50]
9.1.2.1 - 2.1.2.1 Credible and Non?Credible Contingencies [Seite 51]
9.1.2.2 - 2.1.2.2 Operating State of the Power System [Seite 51]
9.1.2.3 - 2.1.2.3 System State Space Representation [Seite 54]
9.2 - 2.2 Reliability Under Various Timeframes [Seite 57]
9.3 - 2.3 Reliability Criteria [Seite 59]
9.4 - 2.4 Reliability and Its Cost as a Function of Uncertainty [Seite 60]
9.4.1 - 2.4.1 Reliability Costs [Seite 60]
9.4.2 - 2.4.2 Interruption Costs [Seite 61]
9.4.3 - 2.4.3 Minimizing the Sum of Reliability and Interruption Costs [Seite 62]
9.5 - 2.5 Conclusion [Seite 63]
9.6 - References [Seite 64]
10 - Chapter 3 Probabilistic Indicators for the Assessment of Reliability and Security of Future Power Systems [Seite 67]
10.1 - 3.1 Introduction [Seite 67]
10.2 - 3.2 Time Horizons in the Planning and Operation of Power Systems [Seite 68]
10.2.1 - 3.2.1 Time Horizons [Seite 68]
10.2.2 - 3.2.2 Overlapping and Interaction [Seite 68]
10.2.3 - 3.2.3 Remedial Actions [Seite 68]
10.3 - 3.3 Reliability Indicators [Seite 71]
10.3.1 - 3.3.1 Security?of?Supply Related Indicators [Seite 71]
10.3.2 - 3.3.2 Additional Indicators [Seite 73]
10.4 - 3.4 Reliability Analysis [Seite 75]
10.4.1 - 3.4.1 Input Information [Seite 75]
10.4.2 - 3.4.2 Pre?calculations [Seite 76]
10.4.3 - 3.4.3 Reliability Analysis [Seite 76]
10.4.4 - 3.4.4 Output: Reliability Indicators [Seite 79]
10.5 - 3.5 Application Example: EHV Underground Cables [Seite 79]
10.5.1 - 3.5.1 Input Parameters [Seite 80]
10.5.2 - 3.5.2 Results of Analysis [Seite 82]
10.6 - 3.6 Conclusions [Seite 84]
10.7 - References [Seite 86]
11 - Chapter 4 An Enhanced WAMS?based Power System Oscillation Analysis Approach [Seite 89]
11.1 - 4.1 Introduction [Seite 89]
11.2 - 4.2 HHT Method [Seite 91]
11.2.1 - 4.2.1 EMD [Seite 91]
11.2.2 - 4.2.2 Hilbert Transform [Seite 91]
11.2.3 - 4.2.3 Hilbert Spectrum and Hilbert Marginal Spectrum [Seite 92]
11.2.4 - 4.2.4 HHT Issues [Seite 93]
11.2.4.1 - 4.2.4.1 The Boundary End Effect [Seite 95]
11.2.4.2 - 4.2.4.2 Mode Mixing and Pseudo?IMF Component [Seite 96]
11.2.4.3 - 4.2.4.3 Parameter Identification [Seite 97]
11.3 - 4.3 The Enhanced HHT Method [Seite 97]
11.3.1 - 4.3.1 Data Pre?treatment Processing [Seite 97]
11.3.1.1 - 4.3.1.1 DC Removal Processing [Seite 98]
11.3.1.2 - 4.3.1.2 Digital Band?Pass Filter Algorithm [Seite 98]
11.3.2 - 4.3.2 Inhibiting the Boundary End Effect [Seite 101]
11.3.2.1 - 4.3.2.1 The Boundary End Effect Caused by the EMD Algorithm [Seite 101]
11.3.2.2 - 4.3.2.2 Inhibiting the Boundary End Effects Caused by the EMD [Seite 102]
11.3.2.3 - 4.3.2.3 The Boundary End Effect Caused by the Hilbert Transform [Seite 102]
11.3.2.4 - 4.3.2.4 Inhibiting the Boundary End Effect Caused by the HT [Seite 105]
11.3.3 - 4.3.3 Parameter Identification [Seite 106]
11.4 - 4.4 Enhanced HHT Method Evaluation [Seite 107]
11.4.1 - 4.4.1 Case I [Seite 107]
11.4.2 - 4.4.2 Case II [Seite 110]
11.4.3 - 4.4.3 Case III [Seite 111]
11.5 - 4.5 Application to Real Wide Area Measurements [Seite 114]
11.6 - Summary [Seite 118]
11.7 - References [Seite 119]
12 - Chapter 5 Pattern Recognition?Based Approach for Dynamic Vulnerability Status Prediction [Seite 121]
12.1 - 5.1 Introduction [Seite 121]
12.2 - 5.2 Post?contingency Dynamic Vulnerability Regions [Seite 122]
12.3 - 5.3 Recognition of Post?contingency DVRs [Seite 123]
12.3.1 - 5.3.1 N?1 Contingency Monte Carlo Simulation [Seite 124]
12.3.2 - 5.3.2 Post?contingency Pattern Recognition Method [Seite 126]
12.3.3 - 5.3.3 Definition of Data?Time Windows [Seite 129]
12.3.4 - 5.3.4 Identification of Post?contingency DVRs-Case Study [Seite 130]
12.4 - 5.4 Real?Time Vulnerability Status Prediction [Seite 135]
12.4.1 - 5.4.1 Support Vector Classifier (SVC) Training [Seite 138]
12.4.2 - 5.4.2 SVC Real?Time Implementation [Seite 139]
12.5 - 5.5 Concluding Remarks [Seite 141]
12.6 - References [Seite 141]
13 - Chapter 6 Performance Indicator?Based Real?Time Vulnerability Assessment [Seite 145]
13.1 - 6.1 Introduction [Seite 145]
13.2 - 6.2 Overview of the Proposed Vulnerability Assessment Methodology [Seite 146]
13.3 - 6.3 Real?Time Area Coherency Identification [Seite 148]
13.3.1 - 6.3.1 Associated PMU Coherent Areas [Seite 148]
13.4 - 6.4 TVFS Vulnerability Performance Indicators [Seite 151]
13.4.1 - 6.4.1 Transient Stability Index (TSI) [Seite 151]
13.4.2 - 6.4.2 Voltage Deviation Index (VDI) [Seite 154]
13.4.3 - 6.4.3 Frequency Deviation Index (FDI) [Seite 157]
13.4.4 - 6.4.4 Assessment of TVFS Security Level for the Illustrative Examples [Seite 157]
13.4.5 - 6.4.5 Complete TVFS Real?Time Vulnerability Assessment [Seite 159]
13.5 - 6.5 Slower Phenomena Vulnerability Performance Indicators [Seite 163]
13.5.1 - 6.5.1 Oscillatory Index (OSI) [Seite 163]
13.5.2 - 6.5.2 Overload Index (OVI) [Seite 167]
13.6 - 6.6 Concluding Remarks [Seite 171]
13.7 - References [Seite 171]
14 - Chapter 7 Challenges Ahead Risk?Based AC Optimal Power Flow Under Uncertainty for Smart Sustainable Power Systems [Seite 175]
14.1 - 7.1 Chapter Overview [Seite 175]
14.2 - 7.2 Conventional (Deterministic) AC Optimal Power Flow (OPF) [Seite 176]
14.2.1 - 7.2.1 Introduction [Seite 176]
14.2.2 - 7.2.2 Abstract Mathematical Formulation of the OPF Problem [Seite 176]
14.2.3 - 7.2.3 OPF Solution via Interior?Point Method [Seite 177]
14.2.3.1 - 7.2.3.1 Obtaining the Optimality Conditions In IPM [Seite 177]
14.2.3.2 - 7.2.3.2 The Basic Primal Dual Algorithm [Seite 178]
14.2.4 - 7.2.4 Illustrative Example [Seite 180]
14.2.4.1 - 7.2.4.1 Description of the Test System [Seite 180]
14.2.4.2 - 7.2.4.2 Detailed Formulation of the OPF Problem [Seite 181]
14.2.4.3 - 7.2.4.3 Analysis of Various Operating Modes [Seite 182]
14.2.4.4 - 7.2.4.4 Iterative OPF Methodology [Seite 183]
14.3 - 7.3 Risk?Based OPF [Seite 184]
14.3.1 - 7.3.1 Motivation and Principle [Seite 184]
14.3.2 - 7.3.2 Risk?Based OPF Problem Formulation [Seite 185]
14.3.3 - 7.3.3 Illustrative Example [Seite 186]
14.3.3.1 - 7.3.3.1 Detailed Formulation of the RB?OPF Problem [Seite 186]
14.3.3.2 - 7.3.3.2 Numerical Results [Seite 187]
14.4 - 7.4 OPF Under Uncertainty [Seite 188]
14.4.1 - 7.4.1 Motivation and Potential Approaches [Seite 188]
14.4.2 - 7.4.2 Robust Optimization Framework [Seite 188]
14.4.3 - 7.4.3 Methodology for Solving the R?OPF Problem [Seite 189]
14.4.4 - 7.4.4 Illustrative Example [Seite 190]
14.4.4.1 - 7.4.4.1 Detailed Formulation of the Worst Uncertainty Pattern Computation With Respect to a Contingency [Seite 190]
14.4.4.2 - 7.4.4.2 Detailed Formulation of the OPF to Check Feasibility in the Presence of Corrective Actions [Seite 192]
14.4.4.3 - 7.4.4.3 Detailed Formulation of the R?OPF Relaxation [Seite 192]
14.4.4.4 - 7.4.4.4 Numerical Results [Seite 194]
14.5 - 7.5 Advanced Issues and Outlook [Seite 195]
14.5.1 - 7.5.1 Conventional OPF [Seite 195]
14.5.1.1 - 7.5.1.1 Overall OPF Solution Methodology [Seite 195]
14.5.1.2 - 7.5.1.2 Core Optimizers: Classical Methods Versus Convex Relaxations [Seite 197]
14.5.2 - 7.5.2 Beyond the Scope of Conventional OPF: Risk, Uncertainty, Smarter Sustainable Grid [Seite 198]
14.6 - References [Seite 199]
15 - Chapter 8 Modeling Preventive and Corrective Actions Using Linear Formulation [Seite 203]
15.1 - 8.1 Introduction [Seite 203]
15.2 - 8.2 Security Constrained OPF [Seite 204]
15.3 - 8.3 Available Control Actions in AC Power Systems [Seite 204]
15.3.1 - 8.3.1 Generator Redispatch [Seite 205]
15.3.2 - 8.3.2 Load Shedding and Demand Side Management [Seite 205]
15.3.3 - 8.3.3 Phase Shifting Transformer [Seite 205]
15.3.4 - 8.3.4 Switching Actions [Seite 206]
15.3.5 - 8.3.5 Reactive Power Management [Seite 206]
15.3.6 - 8.3.6 Special Protection Schemes [Seite 206]
15.4 - 8.4 Linear Implementation of Control Actions in a SCOPF Environment [Seite 206]
15.4.1 - 8.4.1 Generator Redispatch [Seite 207]
15.4.2 - 8.4.2 Load Shedding and Demand Side Management [Seite 208]
15.4.3 - 8.4.3 Phase Shifting Transformer [Seite 209]
15.4.4 - 8.4.4 Switching [Seite 210]
15.5 - 8.5 Case Study of Preventive and Corrective Actions [Seite 211]
15.5.1 - 8.5.1 Case Study 1: Generator Redispatch and Load Shedding (CS1) [Seite 212]
15.5.2 - 8.5.2 Case Study 2: Generator Redispatch, Load Shedding and PST (CS2) [Seite 213]
15.5.3 - 8.5.3 Case Study 3: Generator Redispatch, Load Shedding and Switching (CS3) [Seite 216]
15.6 - 8.6 Conclusions [Seite 217]
15.7 - References [Seite 217]
16 - Chapter 9 Model?based Predictive Control for Damping Electromechanical Oscillations in Power Systems [Seite 219]
16.1 - 9.1 Introduction [Seite 219]
16.2 - 9.2 MPC Basic Theory & Damping Controller Models [Seite 220]
16.2.1 - 9.2.1 What is MPC? [Seite 220]
16.2.2 - 9.2.2 Damping Controller Models [Seite 222]
16.3 - 9.3 MPC for Damping Oscillations [Seite 224]
16.3.1 - 9.3.1 Outline of Idea [Seite 224]
16.3.2 - 9.3.2 Mathematical Formulation [Seite 225]
16.3.3 - 9.3.3 Proposed Control Schemes [Seite 226]
16.3.3.1 - 9.3.3.1 Centralized MPC [Seite 226]
16.3.3.2 - 9.3.3.2 Decentralized MPC [Seite 226]
16.3.3.3 - 9.3.3.3 Hierarchical MPC [Seite 228]
16.4 - 9.4 Test System & Simulation Setting [Seite 230]
16.5 - 9.5 Performance Analysis of MPC Schemes [Seite 230]
16.5.1 - 9.5.1 Centralized MPC [Seite 230]
16.5.1.1 - 9.5.1.1 Basic Results in Ideal Conditions [Seite 230]
16.5.1.2 - 9.5.1.2 Results Considering State Estimation Errors [Seite 232]
16.5.1.3 - 9.5.1.3 Consideration of Control Delays [Seite 234]
16.5.2 - 9.5.2 Distributed MPC [Seite 235]
16.5.3 - 9.5.3 Hierarchical MPC [Seite 235]
16.6 - 9.6 Conclusions and Discussions [Seite 239]
16.7 - References [Seite 240]
17 - Chapter 10 Voltage Stability Enhancement by Computational Intelligence Methods [Seite 243]
17.1 - 10.1 Introduction [Seite 243]
17.2 - 10.2 Theoretical Background [Seite 244]
17.2.1 - 10.2.1 Voltage Stability Assessment [Seite 244]
17.2.2 - 10.2.2 Sensitivity Analysis [Seite 245]
17.2.3 - 10.2.3 Optimal Power Flow [Seite 246]
17.2.4 - 10.2.4 Artificial Neural Network [Seite 246]
17.2.5 - 10.2.5 Ant Colony Optimisation [Seite 247]
17.3 - 10.3 Test Power System [Seite 249]
17.4 - 10.4 Example 1: Preventive Measure [Seite 250]
17.4.1 - 10.4.1 Problem Statement [Seite 250]
17.4.2 - 10.4.2 Simulation Results [Seite 251]
17.5 - 10.5 Example 2: Corrective Measure [Seite 252]
17.5.1 - 10.5.1 Problem Statement [Seite 252]
17.5.2 - 10.5.2 Simulation Results [Seite 253]
17.6 - 10.6 Conclusions [Seite 255]
17.7 - References [Seite 256]
18 - Chapter 11 Knowledge?Based Primary and Optimization?Based Secondary Control of Multi?terminal HVDC Grids [Seite 259]
18.1 - 11.1 Introduction [Seite 260]
18.2 - 11.2 Conventional Control Schemes in HV?MTDC Grids [Seite 260]
18.3 - 11.3 Principles of Fuzzy?Based Control [Seite 262]
18.4 - 11.4 Implementation of the Knowledge?Based Power?Voltage Droop Control Strategy [Seite 262]
18.4.1 - 11.4.1 Control Scheme for Primary and Secondary Power?Voltage Control [Seite 263]
18.4.2 - 11.4.2 Input/Output Variables [Seite 264]
18.4.2.1 - 11.4.2.1 Membership Functions and Linguistic Terms [Seite 265]
18.4.3 - 11.4.3 Knowledge Base and Inference Engine [Seite 267]
18.4.4 - 11.4.4 Defuzzification and Output [Seite 267]
18.5 - 11.5 Optimization?Based Secondary Control Strategy [Seite 268]
18.5.1 - 11.5.1 Fitness Function [Seite 268]
18.5.2 - 11.5.2 Constraints [Seite 270]
18.6 - 11.6 Simulation Results [Seite 271]
18.6.1 - 11.6.1 Set Point Change [Seite 271]
18.6.2 - 11.6.2 Constantly Changing Reference Set Points [Seite 272]
18.6.3 - 11.6.3 Sudden Disconnection of Wind Farm for Undefined Period [Seite 272]
18.6.4 - 11.6.4 Permanent Outage of VSC 3 [Seite 273]
18.7 - 11.7 Conclusion [Seite 273]
18.8 - References [Seite 274]
19 - Chapter 12 Model Based Voltage/Reactive Control in Sustainable Distribution Systems [Seite 277]
19.1 - 12.1 Introduction [Seite 277]
19.2 - 12.2 Background Theory [Seite 278]
19.2.1 - 12.2.1 Voltage Control [Seite 278]
19.2.2 - 12.2.2 Model Predictive Control [Seite 279]
19.2.3 - 12.2.3 Model Analysis [Seite 281]
19.2.3.1 - 12.2.3.1 Definition of Sensitivity [Seite 281]
19.2.3.2 - 12.2.3.2 Computation of Sensitivity [Seite 281]
19.2.4 - 12.2.4 Implementation [Seite 283]
19.3 - 12.3 MPC Based Voltage/Reactive Controller - an Example [Seite 284]
19.3.1 - 12.3.1 Control Scheme [Seite 284]
19.3.2 - 12.3.2 Overall Objective Function of the MPC Based Controller [Seite 285]
19.3.3 - 12.3.3 Implementation of the MPC Based Controller [Seite 287]
19.4 - 12.4 Test Results [Seite 288]
19.4.1 - 12.4.1 Test System and Measurement Deployment [Seite 288]
19.4.2 - 12.4.2 Parameter Setup and Algorithm Selection for the Controller [Seite 289]
19.4.3 - 12.4.3 Results and Discussion [Seite 289]
19.4.3.1 - 12.4.3.1 Loss Minimization Performance of the Controller [Seite 289]
19.4.3.2 - 12.4.3.2 Voltage Correction Performance of the Controller [Seite 290]
19.5 - 12.5 Conclusions [Seite 292]
19.6 - References [Seite 293]
20 - Chapter 13 Multi?Agent based Approach for Intelligent Control of Reactive Power Injection in Transmission Systems [Seite 295]
20.1 - 13.1 Introduction [Seite 295]
20.2 - 13.2 System Model and Problem Formulation [Seite 296]
20.2.1 - 13.2.1 Power System Model [Seite 296]
20.2.2 - 13.2.2 Optimal Reactive Control Problem Formulation [Seite 297]
20.2.3 - 13.2.3 Multi?Agent Sensitivity Model [Seite 298]
20.2.3.1 - 13.2.3.1 Calculation of the First Layer [Seite 299]
20.2.3.2 - 13.2.3.2 Calculation of the Second Layer [Seite 299]
20.3 - 13.3 Multi?Agent Based Approach [Seite 301]
20.3.1 - 13.3.1 Augmented Lagrange Formulation [Seite 301]
20.3.2 - 13.3.2 Implementation Algorithm [Seite 301]
20.4 - 13.4 Case Studies and Simulation Results [Seite 303]
20.4.1 - 13.4.1 Case Studies [Seite 303]
20.4.2 - 13.4.2 Simulation Results [Seite 303]
20.4.2.1 - 13.4.2.1 Performance Comparison Between Multi?Agent Based and Single?Agent Based System [Seite 304]
20.4.2.2 - 13.4.2.2 Impacts of General Parameters on the Proposed Control Scheme's Performance [Seite 305]
20.4.2.3 - 13.4.2.3 Impacts of Multi?Agent Parameters on the Proposed Control Scheme's Performance [Seite 305]
20.5 - 13.5 Conclusions [Seite 306]
20.6 - References [Seite 307]
21 - Chapter 14 Operation of Distribution Systems Within Secure Limits Using Real?Time Model Predictive Control [Seite 309]
21.1 - 14.1 Introduction [Seite 309]
21.2 - 14.2 Basic MPC Principles [Seite 311]
21.3 - 14.3 Control Problem Formulation [Seite 311]
21.4 - 14.4 Voltage Correction With Minimum Control Effort [Seite 314]
21.4.1 - 14.4.1 Inclusion of LTC Actions as Known Disturbances [Seite 315]
21.4.2 - 14.4.2 Problem Formulation [Seite 316]
21.5 - 14.5 Correction of Voltages and Congestion Management with Minimum Deviation from References [Seite 317]
21.5.1 - 14.5.1 Mode 1 [Seite 318]
21.5.2 - 14.5.2 Mode 2 [Seite 318]
21.5.3 - 14.5.3 Mode 3 [Seite 320]
21.5.4 - 14.5.4 Problem Formulation [Seite 321]
21.6 - 14.6 Test System [Seite 322]
21.7 - 14.7 Simulation Results: Voltage Correction with Minimal Control Effort [Seite 324]
21.7.1 - 14.7.1 Scenario A [Seite 325]
21.7.2 - 14.7.2 Scenario B [Seite 326]
21.8 - 14.8 Simulation Results: Voltage and/or Congestion Corrections with Minimum Deviation from Reference [Seite 328]
21.8.1 - 14.8.1 Scenario C: Mode 1 [Seite 328]
21.8.2 - 14.8.2 Scenario D: Modes 1 and 2 Combined [Seite 330]
21.8.3 - 14.8.3 Scenario E: Modes 1 and 3 Combined [Seite 331]
21.9 - 14.9 Conclusion [Seite 332]
21.10 - References [Seite 334]
22 - Chapter 15 Enhancement of Transmission System Voltage Stability through Local Control of Distribution Networks [Seite 337]
22.1 - 15.1 Introduction [Seite 337]
22.2 - 15.2 Long?Term Voltage Stability [Seite 339]
22.2.1 - 15.2.1 Countermeasures [Seite 340]
22.3 - 15.3 Impact of Volt?VAR Control on Long?Term Voltage Stability [Seite 342]
22.3.1 - 15.3.1 Countermeasures [Seite 344]
22.4 - 15.4 Test System Description [Seite 345]
22.4.1 - 15.4.1 Test System [Seite 345]
22.4.2 - 15.4.2 VVC Algorithm [Seite 347]
22.4.3 - 15.4.3 Emergency Detection [Seite 348]
22.5 - 15.5 Case Studies and Simulation Results [Seite 349]
22.5.1 - 15.5.1 Results in Stable Scenarios [Seite 349]
22.5.1.1 - 15.5.1.1 Case A1 [Seite 349]
22.5.1.2 - 15.5.1.2 Case A2 [Seite 350]
22.5.2 - 15.5.2 Results in Unstable Scenarios [Seite 352]
22.5.2.1 - 15.5.2.1 Case B1 [Seite 352]
22.5.2.2 - 15.5.2.2 Case B2 [Seite 352]
22.5.3 - 15.5.3 Results with Emergency Support From Distribution [Seite 354]
22.5.3.1 - 15.5.3.1 Case C1 [Seite 354]
22.5.3.2 - 15.5.3.2 Case C2 [Seite 355]
22.5.3.3 - 15.5.3.3 Case C3 [Seite 359]
22.6 - 15.6 Conclusion [Seite 360]
22.7 - References [Seite 360]
23 - Chapter 16 Electric Power Network Splitting Considering Frequency Dynamics and Transmission Overloading Constraints [Seite 363]
23.1 - 16.1 Introduction [Seite 363]
23.1.1 - 16.1.1 Stage One: Vulnerability Assessment [Seite 363]
23.1.2 - 16.1.2 Stage Two: Islanding Process [Seite 364]
23.2 - 16.2 Network Splitting Mechanism [Seite 366]
23.2.1 - 16.2.1 Graph Modeling, Update, and Reduction [Seite 367]
23.2.2 - 16.2.2 Graph Partitioning Procedure [Seite 368]
23.2.3 - 16.2.3 Load Shedding/Generation Tripping Schemes [Seite 369]
23.2.4 - 16.2.4 Tie?Lines Determination [Seite 370]
23.3 - 16.3 Power Imbalance Constraint Limits [Seite 370]
23.3.1 - 16.3.1 Reduced Frequency Response Model [Seite 371]
23.3.2 - 16.3.2 Power Imbalance Constraint Limits Determination [Seite 373]
23.4 - 16.4 Overload Assessment and Control [Seite 374]
23.5 - 16.5 Test Results [Seite 375]
23.5.1 - 16.5.1 Power System Collapse [Seite 375]
23.5.2 - 16.5.2 Application of Proposed Methodology [Seite 377]
23.5.3 - 16.5.3 Performance of Proposed ACIS [Seite 380]
23.6 - 16.6 Conclusions and Recommendations [Seite 382]
23.7 - References [Seite 383]
24 - Chapter 17 High?Speed Transmission Line Protection Based on Empirical Orthogonal Functions [Seite 387]
24.1 - 17.1 Introduction [Seite 387]
24.2 - 17.2 Empirical Orthogonal Functions [Seite 389]
24.2.1 - 17.2.1 Formulation [Seite 389]
24.3 - 17.3 Applications of EOFs for Transmission Line Protection [Seite 391]
24.3.1 - 17.3.1 Fault Direction [Seite 392]
24.3.2 - 17.3.2 Fault Classification [Seite 393]
24.3.2.1 - 17.3.2.1 Required EOF [Seite 394]
24.3.2.2 - 17.3.2.2 Fault Type Surfaces [Seite 394]
24.3.2.3 - 17.3.2.3 Defining the Fault Type [Seite 394]
24.3.3 - 17.3.3 Fault Location [Seite 395]
24.4 - 17.4 Study Case [Seite 395]
24.4.1 - 17.4.1 Transmission Line Model and Simulation [Seite 395]
24.4.2 - 17.4.2 The Power System and Transmission Line [Seite 396]
24.4.3 - 17.4.3 Training Data [Seite 396]
24.4.4 - 17.4.4 Training Data Matrix [Seite 396]
24.4.4.1 - 17.4.4.1 Data Window [Seite 398]
24.4.4.2 - 17.4.4.2 Sampling Frequency [Seite 398]
24.4.5 - 17.4.5 Signal Conditioning [Seite 399]
24.4.5.1 - 17.4.5.1 Superimposed Component [Seite 399]
24.4.5.2 - 17.4.5.2 Centering the Variables [Seite 399]
24.4.5.3 - 17.4.5.3 Scaling [Seite 399]
24.4.6 - 17.4.6 Energy Patterns [Seite 399]
24.4.7 - 17.4.7 EOF Analysis [Seite 402]
24.4.7.1 - 17.4.7.1 Computing the EOFs [Seite 402]
24.4.7.2 - 17.4.7.2 Fault Patterns Using EOF [Seite 404]
24.4.8 - 17.4.8 Evaluation of the Protection Scheme [Seite 405]
24.4.8.1 - 17.4.8.1 Fault Direction [Seite 405]
24.4.9 - 17.4.9 Fault Classification [Seite 406]
24.4.9.1 - 17.4.9.1 Classification [Seite 407]
24.4.10 - 17.4.10 Fault Location [Seite 408]
24.5 - 17.5 Conclusions [Seite 409]
24.6 - Appendix 17.A Study Cases: WECC 9?bus, ATPDraw Models and Parameters [Seite 410]
24.7 - References [Seite 412]
25 - Chapter 18 Implementation of a Real Phasor Based Vulnerability Assessment and Control Scheme: The Ecuadorian WAMPAC System [Seite 415]
25.1 - 18.1 Introduction [Seite 415]
25.2 - 18.2 PMU Location in the Ecuadorian SNI [Seite 416]
25.3 - 18.3 Steady?State Angle Stability [Seite 417]
25.4 - 18.4 Steady?State Voltage Stability [Seite 421]
25.5 - 18.5 Oscillatory Stability [Seite 424]
25.5.1 - 18.5.1 Power System Stabilizer Tuning [Seite 428]
25.6 - 18.6 Ecuadorian Special Protection Scheme (SPS) [Seite 433]
25.6.1 - 18.6.1 SPS Operation Analysis [Seite 435]
25.7 - 18.7 Concluding Remarks [Seite 436]
25.8 - References [Seite 436]
26 - Index [Seite 439]
27 - EULA [Seite 451]