Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
This book serves as a single-source reference to key machine learning (ML) applications and methods in digital and analog design and verification. Experts from academia and industry cover a wide range of the latest research on ML applications in electronic design automation (EDA), including analysis and optimization of digital design, analysis and optimization of analog design, as well as functional verification, FPGA and system level designs, design for manufacturing (DFM), and design space exploration. The authors also cover key ML methods such as classical ML, deep learning models such as convolutional neural networks (CNNs), graph neural networks (GNNs), generative adversarial networks (GANs) and optimization methods such as reinforcement learning (RL) and Bayesian optimization (BO). All of these topics are valuable to chip designers and EDA developers and researchers working in digital and analog designs and verification.
Haoxing Ren (Mark) was born in Nanchang, China in 1976. He received two BS degrees in Electrical Engineering and Finance, and MS degree in Electrical Engineering from Shanghai Jiao Tong University, China in 1996, and 1999, respectively; MS in Computer Engineering from Rensselaer Polytechnic Institute in 2000; and PhD in Computer Engineering from University of Texas at Austin in 2006. From 2000 to 2015, he worked at IBM Microelectronics and Thomas J. Watson Research Center (after 2006) developing physical design and logic synthesis tools and methodology for IBM microprocessor and ASIC designs. He received several IBM technical achievement awards including the IBM Corporate Award for his work on improving microprocessor design productivity. After his 15 years tenue at IBM, he had a brief stint as a technical executive at a chip design start-up developing server-class CPUs based on IBM OpenPOWER technology. In 2016, Mark joined NVIDIA Research where he currently leads theDesign Automation research group, whose mission is to improve the quality and productivity of chip design through machine learning and GPU accelerated tools. He published many papers in the field of design automation including several book chapters in logic synthesis and physical design. He also received the best paper awards at International Symposium on Physical Design (ISPD) in 2013, Design Automation Conference (DAC) in 2019 and IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems in 2021.
Dateiformat: PDFKopierschutz: Wasserzeichen-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Wasserzeichen-DRM wird hier ein „weicher” Kopierschutz verwendet. Daher ist technisch zwar alles möglich – sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.
Weitere Informationen finden Sie in unserer E-Book Hilfe.