Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
In this chapter, the basic of photonic components including different waveguide design, modulators, lasers, and detectors is presented.
Waveguides; modulators; laser; detectors; general
Outline
General 63
Buried Channel Waveguide 66
Strip-Loaded Waveguide 66
Ridge Waveguide 66
Rib Waveguide 66
Basics of Lasers, Modulators, Detectors, and Wavelength Selective Devices 68
Lasers 68
Basics of Photonic Detectors 70
Detector Characteristics 72
Responsivity 74
Dark Current 74
Noise Characteristics of Photodetectors 74
Modulators: Principles and Mechanisms of Optical Modulation 76
Photonics Switches: Spatial Routing of High-Speed Data Streams 79
Switches 79
Devices for Wavelength Division Multiplexed Systems 81
Devices Based on Spectrally Dependent Interference Effects 83
References 84
Integrated photonics devices, and indeed most photonics systems, include sources (lasers, LEDs), light detectors, and an optical waveguide (or possibly free space) based “fabric” or network in between to transport light in some shape. In the waveguided version, this fabric can include optical modulators, changing amplitude, phase, and/or polarization of the light, as well as switches, to redirect light, optical amplifiers, and wavelength selective structures for filtering, wavelength multiplexing and demultiplexing, and other operations involving wavelengths or light frequency. Integrated photonics has developed at a considerably slower pace than integrated electronics, as a matter of fact, it was a subject of a joke stating that “integrated photonics is the technology of the future and will remain the technology of the future.” However, this state of affairs has altogether been changed by progress in material technology in III–V compounds (GaAs, InP systems, etc), ferroelectrics (LiNbO3), silicon, polymers, and metal optics.
The basic structure of an integrated photonics circuit is the optical waveguide (Figure 2.1). In most photonics integration applications and in all such applications where highest performance is sought, these waveguides are single mode, by which is meant that only one spatial mode can propagate, and other modes are evanescent or cut off [1]. However, the waveguides are not strictly single mode and normally support two orthogonal polarizations, a fact that has caused a number of problems in the past and present. The reason is that the standard single mode fiber does not preserve light polarization, and hence photonic elements in a fabric of such fibers need to work independently of the state of polarization of the input light. Such polarization independence normally means that compromises in the device performance have to be made.
A so-called channel waveguide confines light in two dimensions (in the so-called core) while it propagates in the third dimension. In the more exotic so-called plasmonic waveguide, light can be guided along a single plasmonic, usually metal-dielectric interface, as will be briefly discussed below. The confinement of light in the two dimensions orthogonal to the direction of light propagation is accomplished by total internal reflection [1], just like in an optical fiber, by having a core with higher refractive index than the surrounding. This surrounding is called cladding in a fiber and is in general partly the substrate in a PIC.
Figure 2.2 shows some basic structures of integrated photonic waveguides, with a central core of higher refractive index than the surrounding medium, cladding, or substrate. The optical field is also shown in Figure 2.3.
Figure 2.2(a) shows a buried channel waveguide, and it consists of a high-index waveguiding core buried in a low-index cladding. The optical wave can be confined in two dimensions due to differences of refractive index between the core and the cladding.
Figure 2.2(b) is the geometry of a strip-loaded waveguide, which is composed of three dielectric layers: a substrate, a planar layer, and then a ridge. The planar waveguide (without the strip) already provides optical confinement in the vertical direction (y-axis), and the additional strip can offer localized optical confinement under the strip, due to the local increase of effective refractive index.
Figure 2.2(c) is the ridge waveguide, which is a step-index structure. The difference between dielectric layers at the sides of the guide, as well as the top and bottom faces, can confine the optical wave in two dimensions.
Figure 2.2(d) is the cross-section of a rib waveguide. The guiding layer basically consists of a slab with a strip (or several strips) superimposed onto it, which has a similar structure as the strip-loaded waveguide, and the strip is part of the waveguiding core.
The waveguides are characterized by the following:
• Optical power loss, usually in dB/cm.
• Effective index, usually denoted by N or Neff, which is equal to β/k0, where β is the real part of the propagation constant and k0 is the wave number in vacuum. The effective index is, for guided waves, larger than cladding index but smaller than core index.
• Dispersion, i.e. the variation of the effective index with wavelength. This determines limitations in the propagation length of very short pulses but is normally not so important in PICs due to the small propagation distances. However, for the devices in PICs, such as filters, the so-called group delay dispersion, i.e. the derivative of the group delay with respect to angular frequency can be significant and important.
• Geometrical waveguide and optical field cross-sectional area.
• The useful wavelength range for light transportation. These are characterized by several “bands” between 1260 and 1675 nm for ICT applications.
Waveguide parameters and propagation characteristics for waveguides fabricated with different material compositions are presented in Table 2.1. SOI is silicon on insulator, usually quartz (SiO2). Small waveguide bending radii are desirable for dense integration.
Table 2.1
Waveguide Parameters for Different Materials
The waveguides connect different functional elements—lasers, modulators, switches, optical amplifiers, wavelength selective devices, detectors, etc.—and are generally also used to create these device structures, as will be described in the following section. Figure 2.4 shows one of the first publications introducing the concept of integrated photonics.
Dateiformat: ePUBKopierschutz: Adobe-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet – also für „fließenden” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!
Weitere Informationen finden Sie in unserer E-Book Hilfe.
Dateiformat: PDFKopierschutz: Adobe-DRM (Digital Rights Management)
Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.
Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!
Dateiformat: ePUBKopierschutz: Wasserzeichen-DRM (Digital Rights Management)
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet - also für „fließenden” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Wasserzeichen-DRM wird hier ein „weicher” Kopierschutz verwendet. Daher ist technisch zwar alles möglich – sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.