Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
Ian M. Riddlestone; Joseph A.B. Abdalla; Simon Aldridge* Inorganic Chemistry Laboratory, Oxford, United Kingdom * Corresponding author: email address: simon.aldridge@chem.ox.ac.uk
Developments in the coordination chemistry of BH, AlH, and GaH bonds at transition metal centers are reviewed, with particular emphasis on factors influencing electronic/geometric structure and bond activation.
Keywords
Group 13
Hydrides
Borane
Alane
Gallane
s-Complex
Oxidative addition
Dehydrogenation
Abbreviations
ArCl C6H3Cl2-2,6
Arf C6H3(CF3)2-3,5
cat catecholato, O2C6H4-1,2
Catf O2C6H3-1,2-F-3
cdt 1,5,9-cyclododecatriene
cht 1,3,5-cycloheptatriene
cod 1,5-cyclooctadiene
Cp cyclopentadienyl
Cp´ methylcyclopentadienyl
Cy cyclohexyl
dcype 1,2-bis(dicyclohexylphosphino)ethane
Dipp 2,6-diisopropylphenyl
hppH 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine
iBu isobutyl = CH2CH(CH3)2
iPr isopropyl = CH(CH3)2
Mes mesityl = 2,4,6-trimethylphenyl
NHC N-heterocyclic carbene
p-cym para-cymene = 4-iPrC6H4Me
pin pinacolato, OCMe2CMe2O
quin quinuclidine = N(CH2CH2)3CH
tbe tertbutylethene (3,3-dimethylbutene), tBuCHCH2
tBu tertbutyl = C(CH3)3
thf tetrahydrofuran
Over the last 20 years, significant research effort has been expended on probing the mode(s) of interaction of group 13 hydrides with transition metal centers. An initial driver for such work-notwithstanding issues relating to chemical reversibility-was potential applications of boron/nitrogen based materials containing a high weight% of hydrogen, as hydrogen storage materials; more recent work has focussed on such systems as building blocks in the construction of inorganic polymers.1 Applications of alanes in hydrogen storage media have also received some attention,2 but in general, the hydrides of the heavier group 13 elements have not been in the spotlight, primarily due to their lower percentages by weight of hydrogen and their greater thermal instability.3
Control of dihydrogen release or of polymer formation, for example, means that a significant part of this effort has been directed toward metal-mediated processes; the interaction of EH bonds with transition metal centers and their potential modes of activation are therefore of key importance.4,5 As a consequence, the factors underpinning the fundamental bonding interactions (s-donation, p-acceptance) of BH, and to a lesser extent AlH and GaH bonds, with transition metals have been explored (Fig. 1). The resulting data offer comparison with much more widely established families of s-complex, featuring coordinated HH, CH, or SiH bonds.6-8
Even leaving aside complexes containing anionic borohydride-type ligands,9 the coordination of BH bonds at transition metal centers is well precedented, and many BH s-complexes featuring three- and four-coordinate boranes have been reported.5 Examples abound involving either ?1 or ?2 binding-that is featuring interactions with the metal center through one or two BH bonds, respectively. Within this sphere, there has been a wealth of investigation into the interaction of the BH bonds in amine- and aminoboranes with transition metals, with such s-complexes having been postulated as intermediates in BN dehydrocoupling reactions.1,4 In-depth mechanistic details of such processes are not the focus of this chapter and will not be examined in depth beyond consideration of the modes of ligation of relevant species. Activation of one BH bond, generally involving oxidative addition at a metal center, is very well established, in part reflecting the implication of such a step in a number of processes leading to the borylation of both saturated and unsaturated hydrocarbons.10,11 However, activation of two BH bonds, leading ultimately to dehydrogenation and the formation of a subvalent borylene complex, is much less common.12,13
The related chemistry of the heaver group 13 elements aluminium and gallium is much less developed than that of boron.14,15 The interaction of AlH bonds with transition metal centers is limited to the formation of a relatively small number of s-complexes featuring bridging MHAl motifs, with no reported propensity toward oxidative addition of AlH bonds or dehydrogenation at a transition metal center.16 s-Alane complexes themselves are rare; the first example of an unsupported AlH s-complex, (cdt)Ni[?1-HAlMe2·quin], was reported by Pörschke and coworkers in 1990.14 There is an even greater paucity of examples of GaH coordination at transition metals, in part due to the much greater thermal fragility of GaH bonds.3 Ueno reported the first structurally characterized examples of GaH s-complexes, involving coordination of the amine-stabilized gallane quin·GaH3 at [Cp´Mn(CO)2] and [M(CO)5] fragments (M = Cr, Mo, W).15 However, with the + 1 oxidation state more readily accessible for gallium (and the GaH bond being inherently weaker than its lighter congeners),3,17 the potential for novel and interesting chemistry initiated by the dehydrogenation of Ga(III) hydride complexes at transition metal centers is not only foreseeable but beginning to be realized in practice.15,18
This chapter will primarily focus on reviewing the coordination and activation of AlH and GaH bonds at transition metal centers, making reference to key examples of related BH s-complexes in order to put fundamental issues of electronic structure and bonding into appropriate context. In the interests of space, and with a view to comparing the intrinsic electronic/geometric properties of the coordinated s-bond, "tethered" systems in which the coordinated EH bond forms part of an existing metal-bound ligand are not as a rule included.
The long-standing desire to use an organometallic system to selectively functionalize CH bonds,19 and the inherent challenges related to this process, have seen the development of a number of systems to model the CH bond activation process (involving, for example, silanes and boranes as alkane mimics).5,8 The isoelectronic relationship between CH4 and [BH4]- led to much interest in the formation of transition metal, lanthanide, and actinide borohydride complexes featuring ?1, ?2, and ?3 coordination modes (Fig. 2).9,20 Although isoelectronic with CH4, the inherent negative charge possessed by the [BH4]- anion provides a significant electrostatic contribution to bonding.9 Consequently, the coordination chemistry of neutral boranes is perceived as a better potential model for alkane coordination, and this area has been the subject of significant interest in the recent chemical literature. Two distinct classes of borane coordination complex have emerged, involving three- and four-coordinate boranes, respectively.
The formation of Lewis-base adducts of BH3 is well established, and being charge neutral, L·BH3 systems perhaps more closely resemble alkanes in their potential ligating properties, than does the borohydride anion. Of key importance in rationalizing the bonding in complexes containing L·BH3 ligands is the coordinative saturation of the boron center, and crucially the population of the vacant boron pz-orbital by the Lewis base (L). Consequently, the L·BH3 moiety has a limited role as a p-acceptor, as the BH s*-orbital is typically too high in energy to interact significantly with metal-based d-orbitals.21 By contrast, three-coordinate boranes, archetypally represented by HBcat, possess a formally vacant pz-orbital at the...
Dateiformat: ePUBKopierschutz: Adobe-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet – also für „fließenden” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!
Weitere Informationen finden Sie in unserer E-Book Hilfe.
Dateiformat: PDFKopierschutz: Adobe-DRM (Digital Rights Management)
Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.
Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!
Dateiformat: ePUBKopierschutz: Wasserzeichen-DRM (Digital Rights Management)
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet - also für „fließenden” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Wasserzeichen-DRM wird hier ein „weicher” Kopierschutz verwendet. Daher ist technisch zwar alles möglich – sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.