Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
Maschinelles Lernen ist ein Teilgebiet der künstlichen Intelligenz (KI, engl. Artificial Intelligence, AI), bei der Computer aus Daten lernen - üblicherweise, um ihre Performance für eine eng definierte Aufgabe zu verbessern -, ohne explizit dafür programmiert zu werden. Der Begriff maschinelles Lernen (engl. Machine Learning) wurde schon 1959 geprägt (von Arthur Samuel, einer Legende auf dem Gebiet der KI), doch im 21. Jahrhundert gab es nur wenige größere kommerzielle Erfolge im maschinellen Lernen zu verzeichnen. Stattdessen fristete das Gebiet ein Nischendasein im Rahmen wissenschaftlicher Forschungen an Universitäten.
Schon ziemlich früh (bereits in den 1960er-Jahren) waren viele Mitglieder der KI-Community viel zu optimistisch hinsichtlich der Zukunft der künstlichen Intelligenz. Forscher dieser Zeit, wie zum Beispiel Herbert Simon und Marvin Minsky, behaupteten, dass die KI innerhalb von Jahrzehnten das Niveau der menschlichen Intelligenz erreichen würde:1
Innerhalb von zwanzig Jahren werden Maschinen in der Lage sein, jede Arbeit zu verrichten, zu der ein Mensch fähig ist.
- Herbert Simon, 1965
In drei bis acht Jahren werden wir eine Maschine mit der allgemeinen Intelligenz eines durchschnittlichen Menschen haben.
- Marvin Minsky, 1970
Von ihrem Optimismus geblendet, konzentrierten sich Forscher auf Projekte der sogenannten starken KI oder allgemeinen künstlichen Intelligenz (engl. Artificial General Intelligence, AGI), um damit KI-Agenten zu schaffen, die Problemlösung, Wissensdarstellung, Lernen und Planen, Natural Language Processing, Wahrnehmung und Bewegungskontrolle realisieren können. Zwar half dieser Optimismus, beträchtliche Mittel von großen Akteuren wie z.B. dem Verteidigungsministerium zu beschaffen, doch nahmen diese Forscher zu anspruchsvolle Probleme in Angriff und waren letztlich zum Scheitern verurteilt.
Die KI-Forschung schaffte nur gelegentlich den Sprung vom akademischen Umfeld in die Industrie, und es folgte eine Reihe sogenannter KI-Winter. In diesen KI-Wintern (eine Analogie, die sich am nuklearen Winter in der Ära des Kalten Kriegs orientierte) gingen das Interesse an der KI und ihre Finanzierung zurück. Gelegentlich auftretende Hype-Zyklen um KI hielten kaum an. Anfang der 1990er-Jahre hatte das Interesse an der KI und ihrer Finanzierung einen Tiefpunkt erreicht.
KI ist in den letzten zwei Jahrzehnten mit Vehemenz wieder aufgetaucht - zuerst als rein akademischer Interessenbereich und jetzt inzwischen als ausgewachsenes Gebiet, das die hellsten Köpfe von Universitäten wie auch von Unternehmen in ihren Bann zieht.
Drei entscheidende Entwicklungen stehen hinter diesem Wiederaufleben: Durchbrüche bei den Algorithmen für maschinelles Lernen, die Verfügbarkeit großer Datenbestände und superschnelle Computer.
Erstens haben Forscher ihre Aufmerksamkeit auf eng definierte Teilprobleme der starken KI gerichtet, auch als schwache KI bezeichnet, anstatt sich auf übermäßig ambitionierte starke KI-Projekte zu versteifen. Dieser Fokus auf die Verbesserung von Lösungen für eng definierte Aufgaben führte zu algorithmischen Durchbrüchen, die den Weg für erfolgreiche kommerzielle Anwendungen ebneten. Viele dieser Algorithmen - oftmals ursprünglich an Universitäten oder privaten Forschungseinrichtungen entwickelt - wurden schnell als Open Source zugänglich gemacht, was die Akzeptanz dieser Technologien durch die Industrie beschleunigte.
Zweitens wurde die Datenerfassung zu einem Schwerpunkt für die meisten Unternehmen, und die Kosten für das Speichern der Daten fielen aufgrund der Fortschritte in der digitalen Datenspeicherung drastisch. Dank des Internets wurden Unmengen von Daten auch in einem noch nie gekannten Umfang weithin und öffentlich zugänglich.
Drittens wurden die Computer immer leistungsfähiger und über die Cloud verfügbar, sodass KI-Forscher ihre IT-Infrastruktur bei Bedarf einfach und preiswert skalieren konnten, ohne zunächst riesige Mittel in Hardware zu investieren.
Die oben genannten Kräfte haben die KI aus dem akademischen Umfeld in die Industrie befördert und dazu beigetragen, das Interesse und die Finanzierung von Jahr zu Jahr auf ein höheres Niveau zu heben. KI ist nicht mehr nur ein theoretischer Interessenbereich, sondern ein vollwertiges Anwendungsgebiet. Abbildung 1 zeigt ein Diagramm aus Google Trends, das das wachsende Interesse am maschinellen Lernen im Verlauf der letzten fünf Jahre darstellt.
Abbildung 1: Interesse am maschinellen Lernen in den letzten Jahren
KI gilt heute als bahnbrechende horizontale Technologie - ähnlich dem Aufkommen von Computern und Smartphones -, die in den nächsten zehn Jahren erhebliche Auswirkungen auf jede einzelne Branche haben wird.2
Zu den erfolgreichen kommerziellen Anwendungen, die sich auf maschinelles Lernen stützen, gehören unter anderem optische Zeichenerkennung, Filtern von Spam-Mails, Bildklassifizierung, Computervision, Spracherkennung, maschinelle Übersetzung, Gruppensegmentierung und Clustering, Generieren von synthetischen Daten, Anomalieerkennung, Prävention von Cyberkriminalität, Erkennung von Kreditkartenbetrug, Erkennung von Betrug im Internet, Zeitreihenvorhersage, Natural Language Processing, Brett- und Videospiele, Dokumentklassifizierung, Empfehlungssysteme, Suchen, Robotik, Onlinewerbung, Sentimentanalyse, DNA-Sequenzierung, Finanzmarktanalyse, Informationsgewinnung, Beantwortung von Fragen und Entscheidungsfindung im Gesundheitswesen.
Die hier beschriebenen Meilensteine halfen, die KI von einem meist akademischen Gesprächsthema zu einem wichtigen Bestandteil der heutigen Technologie zu machen.
Dateiformat: ePUBKopierschutz: Wasserzeichen-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet - also für „fließenden” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Wasserzeichen-DRM wird hier ein „weicher” Kopierschutz verwendet. Daher ist technisch zwar alles möglich – sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.
Weitere Informationen finden Sie in unserer E-Book Hilfe.