Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
Kunal Singha1, Baburaj Regubalan2, Pintu Pandit1, Subhankar Maity3, and Shakeel Ahmed4
1National Institute of Fashion Technology, Department of Textile Design, Mithapur Farms, Patna 800001, India
2Kalasalingam Academy of Research and Education, Department of Food Processing Technology, Krishnankoil, Tamilnadu 626128, India
3Uttar Pradesh Textile Technology Institute, Department of Textile Technology, Kanpur, Uttar Pradesh 208001, India
4Government Degree College Mendhar, Department of Chemistry, Mendhar, Jammu and Kashmir 185211, India
Today creating biodegradable and natural materials based on biodegradable food packaging materials is a major global challenge for the environment. However, the use of bio-based packaging products such as food grade or biodegradable films from recycled sources could address the problem of waste in at least some way. The correct choice of products and packaging technology thus enables consistency and freshness of products to be maintained over the time required to be promoted and used. Even though, the availability of bio-based food packaging is limited in the market due to its low gas barrier and mechanical properties. As a result, these natural polymers were frequently mixed or chemically modified with other synthetic polymers to expand their packaging applications. Bio-based packaging has many essential features, including traditional packaging, such as the preservation and securing of products, ensuring nutritional integrity and health, and providing awareness to the consumers. Another nanotechnology that may help to minimize waste from the processing of packaged food is the use of nanocomposites in the processing. The use of nanocomposites that seek to facilitate the use of biologically degradable films protects fresh food and enhances the durability of it.
Nanotechnology involves the manufacturing, manipulating, and characterizing of nanosized objects, particles, and materials with a dimension of approximately 1-100?nm. Although the size of the material is reduced to the nanoscale range, its physical and chemical properties are magnified greatly from those of the macroscale structures made of the same material. Consequently, the nanoscale (1-100?nm) systems may have some implications, but successful implementations of the same for serving mankind are invaluable. Nanotechnology provides a range of significant improvements to enhance health, stability, and quality of life and to create assertive impacts on the environment [1, 2].
The packaging systems are protective shields that secure, manage, transports, store, retains, and marks any entity in the supply chain from raw materials to end users. These functions are required to accurately define any type of packaging, and how a variety of requirements, such as mechanical, thermal, and barrier characteristics, are preserved depending on the type of products to be packaged. Nanomaterials are gradually being used in the food packaging industry; therefore a variety of advanced nanomaterial technology is being researched and developed for packaging materials. There have been studies of approximately 500 nano-packaging materials for industrial use, while nanotechnology is expected to manufacture 25% of all food packings. Nano-packaging can also conceive antimicrobials, minerals, enzymes, flavors, and nutraceuticals to enhance shelf life and performance. In this line, antimicrobial films are used as packaging material to improve the shelf life of perishable foods like fruits and dairy products [3-6].
Nanotechnology's potential role in the food technology sector is probably the most exciting in the immediate future, and it is emerging as one of the fastest developing areas of nano-research of agriculture and food. New developments in food processing, labeling, nutraceutical delivery, quality assurance, and healthy food have also been seen. Many organizations, scientists, inventors, and industries are developing new technologies, protocols, and products, which directly apply nanotechnology to farming and food products. Companies are now designing packaging materials that prolong food and beverage life and boost consumer safety through the use of nanotechnology in daily-based consumer packaging [6]. Food processing and control are the main subjects of food industry-related nanotechnology research and development. Effective and intelligent packaging is the leading advancement of food packaging that aims to enhance product quality and consistency as well as to maximize product longevity. Most businesses and industrial design nano-packaging like time-temperature indicators (TTIs) can react to undesirable or damaging changes under the worse effects of climatic pollution. They can self-repair themselves, thus making this nano-packaging as "active and smart packaging."
Nanotechnology enhances the delivery of nutraceuticals, vitamins, or fragile micronutrients to everyday foods by creating small, edible capsules based on released nanoparticles to targeted locations in the body. Relevant health consequences are reduced frequency of cardiac disease, stroke, neurodegenerative diseases, and cancer [7, 8]. Nanoparticles are also used to introduce multiple functionalities such as color and odors as well as to be used as storage tanks for drug releases or fungicides. Despite considerable development in this area, nanotechnology remains a rare topic for food packaging, nanotechnology, and food science and technology. This chapter explores this knowledge gap by closely analyzing current developments in nano-package technology for food and drug systems and particular applications that gain immediate customer adoption and regulatory attention. This article examines this knowledge gap on the topics covered, which include bio-based packaging for environmentally safe biodegradable packaging; improved packages to enhance barrier properties, mechanical durability, and flexibility; active packaging of antimicrobials, flavor absorbers, and oxygen scavenging; and intelligent package features like freshness indicator, ripeness indicator, radio-frequency identification (RFID), and TTI. This chapter concludes with a concise overview of future nano-packaging technologies possibilities.
Nanostructured food ingredients are developed to facilitate sensory attributes like appearance, taste, texture, and flavor. Nanotechnology increases the durability of different foods and reduces food waste caused by microbial infestation. Nanocarriers are presently used as a supply system without interfering with their basic morphology to transport food additives into food products. The particle size can directly affect the delivery of bioactive compounds to different sites since some cell lines have noticed that it is efficient to absorb only submicron nanoparticles but not larger microparticles [9-13].
Nanotechnology provides effective distribution systems with all the functionality mentioned earlier for encapsulation formulation, emulsions, biopolymer matrices, clear solutions, and colloids. Nano-polymers are intended to replace traditional products for food packaging. Nanosensors may show the existence of pathogenic microbes, toxins, and adulterants in food [14]. Nanoparticles have greater characteristics of encapsulation and release performance than traditional embossing methods. By nanoencapsulation of the masks scent or taste, the interactions between active ingredients and the food network that govern the release of active agents can be monitored. This method guarantees the supply of desired food ingredients at the desired level of production, storage, and usage. This nano-packing method is consistent with other ingredients in the device against moisture, fire, chemicals, and biological degradation. Moreover, these nanotechnologies-based food nutrition delivery systems can reach deep into the tissues and effectively distribute active agents to the target sites in the body because of their smaller scale [15-18].
Nanotechnology offers several options to improve meat quality and taste. Nano-encapsulation techniques have been widely applied to enhance flavor release and retention and maintain the balance of food. These bioactive molecules nanocarriers are popular for their safety and supply-based feature worldwide. Rutin is a popular dietary flavonoid, but its use is limited in the food industry [19]. Its low solubility and ferritin nanoencapsulation have improved the solubility and the thermal and UV stability of the ferritin-trapped routines compared with the free routine. Thus, nanoemulsions are widely used in producing lipid-soluble biological compounds that can be generated with easy processing methods utilizing natural foods and can also be engineered to increase water dispersion and bioavailability. Nano-packagings are important ways to boost the bioavailability of nutraceutical compounds because of their subcellular size, which contributes to higher bioavailability than large particles and produces faster and longer releases of encapsulating food nutrient compounds. Many metal oxides such as titanium dioxide and silicon (SiO2) are widely used as colorants or flow agents in foodstuffs....
Dateiformat: ePUBKopierschutz: Adobe-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet – also für „fließenden” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!
Weitere Informationen finden Sie in unserer E-Book Hilfe.