Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
Chemistry Essentials For Dummies (9781119591146) was previously published as Chemistry Essentials For Dummies (9780470618363). While this version features a new Dummies cover and design, the content is the same as the prior release and should not be considered a new or updated product.
Whether studying chemistry as part of a degree requirement or as part of a core curriculum, students will find Chemistry Essentials For Dummies to be an invaluable quick reference guide to the fundamentals of this often challenging course. Chemistry Essentials For Dummies contains content focused on key topics only, with discrete explanations of critical concepts taught in a typical two-semester high school chemistry class or a college level Chemistry I course, from bonds and reactions to acids, bases, and the mole. This guide is also a perfect reference for parents who need to review critical chemistry concepts as they help high school students with homework assignments, as well as for adult learners headed back into the classroom who just need to a refresher of the core concepts.
The Essentials For Dummies Series Dummies is proud to present our new series, The Essentials For Dummies. Now students who are prepping for exams, preparing to study new material, or who just need a refresher can have a concise, easy-to-understand review guide that covers an entire course by concentrating solely on the most important concepts. From algebra and chemistry to grammar and Spanish, our expert authors focus on the skills students most need to succeed in a subject.
John T. Moore, EdD, is Regents Professor of Chemistry Emeritus and Coordinator of STEM Activities at Stephen F. Austin State University. He is the author of Chemistry For Dummies and coauthor of Biochemistry For Dummies.
Introduction 1
About This Book 1
Conventions Used in This Book 2
Foolish Assumptions 2
Icons Used in This Book 3
Where to Go from Here 3
Chapter 1: Matter and Energy: Exploring the Stuff of Chemistry 5
Knowing the States of Matter and Their Changes 6
Solids, liquids, and gases 6
Condensing and freezing 7
Melting and boiling 8
Skipping liquids: Sublimation 9
Pure Substances and Mixtures 9
Pure substances 10
Throwing mixtures into the mix 11
Measuring Matter 12
Nice Properties You've Got There 13
Energy Types 14
Kinetic energy 14
Potential energy 15
Temperature and Heat 15
Chapter 2: What's in an Atom? 17
Subatomic Particles 17
Centering on the Nucleus 19
Locating Those Electrons 21
The quantum mechanical model 21
Energy level diagrams 26
Isotopes and Ions 30
Isotopes: Varying neutrons 31
Ions: Varying electrons 32
Chapter 3: The Periodic Table 35
Repeating Patterns: The Modern Periodic Table 35
Arranging Elements in the Periodic Table 38
Grouping metals, nonmetals, and metalloids 38
Arranging elements by families and periods 41
Chapter 4: Nuclear Chemistry 43
Seeing How the Atom's Put Together 43
Dealing with a Nuclear Breakup: Balancing Reactions 44
Understanding Types of Natural Radioactive Decay 46
Alpha emission 47
Beta emission 48
Gamma emission 48
Positron emission 48
Electron capture 49
Half-Lives and Radioactive Dating 49
Calculating remaining radioactivity 50
Radioactive dating 51
Breaking Elements Apart with Nuclear Fission 51
Mass defect: Where does all that energy come from? 52
Chain reactions and critical mass 52
Coming Together with Nuclear Fusion 53
Chapter 5: Ionic Bonding 55
Forming Ions: Making Satisfying Electron Trades 55
Gaining and losing electrons 56
Looking at charges on single-atom ions 58
Grouping atoms to form polyatomic ions 61
Creating Ionic Compounds 63
Making the bond: Sodium metal + chlorine gas = sodium chloride 63
Figuring out the formulas of ionic compounds 64
Naming ionic compounds 66
Bonding Clues: Electrolytes and Nonelectrolytes 68
Chapter 6: Covalent Bonding 69
Covalent Bond Basics 69
Sharing electrons: A hydrogen example 69
Comparing covalent bonds with other bonds 71
Dealing with multiple bonds 72
Naming Covalent Compounds Made of Two Elements 73
Writing Covalent Compound Formulas 74
Empirical formulas 74
Molecular or true formulas 75
Structural formulas: Dots and dashes 75
Electronegativities: Which Atoms Have More Pull? 81
Predicting the type of bond 81
Polar covalent bonding: Creating partial charges 83
Attracting other molecules: Intermolecular forces 84
Chapter 7: Chemical Reactions 87
Reactants and Products: Reading Chemical Equations 87
Collision Theory: How Reactions Occur 88
Hitting the right spot 89
Adding, releasing, and absorbing energy 90
Types of Reactions 92
Combination reactions: Coming together 92
Decomposition reactions: Breaking down 93
Single displacement reactions: Kicking out another element 93
Double displacement reactions: Trading places 95
Combustion reactions: Burning 97
Redox reactions: Exchanging electrons 97
Balancing Chemical Equations 97
Balancing the Haber process 98
Balancing the burning of butane 99
Knowing Chemical Equilibrium Backward and Forward 100
Matching rates of change in the Haber process 101
Constants: Comparing amounts of products and reactants 102
Le Chatelier's Principle: Getting More (or Less) Product 103
Changing the concentration 103
Changing the temperature 104
Changing the pressure 104
Chemical Kinetics: Changing Reaction Speeds 105
Seeing How Catalysts Speed Up Reactions 107
Heterogeneous catalysis: Giving reactants a better target 108
Homogeneous catalysis: Offering an easier path 108
Chapter 8: Electrochemistry: Using Electrons 111
Transferring Electrons with Redox Reactions 111
Oxidation 112
Reduction 113
One's loss is the other's gain 114
Oxidation numbers 115
Balancing Redox Equations 116
Exploring Electrochemical Cells 120
Galvanic cells: Getting electricity from chemical reactions 121
Electrolytic cells: Getting chemical reactions from electricity 122
Having it both ways with rechargeable batteries 123
Chapter 9: Measuring Substances with the Mole 125
Counting by Weighing 125
Moles: Putting Avogadro's Number to Good Use 127
Defining the mole 127
Calculating weight, particles, and moles 128
Finding formulas of compounds 129
Chemical Reactions and Moles 130
Reaction stoichiometry 131
Percent yield 132
Limiting reactants 133
Chapter 10: A Salute to Solutions 135
Mixing Things Up with Solutes, Solvents, and Solutions 135
How dissolving happens 136
Concentration limits 136
Saturated facts 137
Understanding Solution Concentration Units 138
Percent composition 138
Molarity: Comparing solute to solution 140
Molality: Comparing solute to solvent 143
Parts per million 143
Chapter 11: Acids and Bases 145
Observing Properties of Acids and Bases 145
The Brønsted-Lowry Acid-Base Theory 146
Understanding Strong and Weak Acids and Bases 147
Strong: Ionizing all the way 147
Weak: Ionizing partially 149
Acid-Base Reactions: Using the Brønsted-Lowry System 151
Acting as either an acid or base: Amphoteric water 152
Showing True Colors with Acid-Base Indicators 153
Doing a quick color test with litmus paper 153
Phenolphthalein: Finding concentration with titration 154
Phun with the pH Scale 155
Chapter 12: Clearing the Air on Gases 159
The Kinetic Molecular Theory: Assuming Things about Gases 159
Relating Physical Properties with Gas Laws 162
Boyle's Law: Pressure and volume 163
Charles's Law: Volume and temperature 164
Gay-Lussac's Law: Pressure and temperature 165
The combined gas law: Pressure, volume, and temp 166
Avogadro's Law: The amount of gas 167
The ideal gas equation: Putting it all together 168
Chapter 13: Ten Serendipitous Discoveries in Chemistry 171
Archimedes: Streaking Around 171
Vulcanization of Rubber 172
Molecular Geometry 172
Mauve Dye 172
Kekulé: The Beautiful Dreamer 173
Discovering Radioactivity 173
Finding Really Slick Stuff: Teflon 173
Stick 'Em Up! Sticky Notes 174
Growing Hair 174
Sweeter than Sugar 174
Index 175
Chapter 1
IN THIS CHAPTER
Understanding the states of matter
Differentiating between pure substances and mixtures
Measuring matter with the metric system
Examining the properties of chemical substances
Discovering the different types of energy
Simply put, chemistry is a whole branch of science about matter, which is anything that has mass and occupies space. Chemistry is the study of the composition and properties of matter and the changes it undergoes.
Matter and energy are the two basic components of the universe. Scientists used to believe that these two things were separate and distinct, but now they realize that matter and energy are linked. In an atomic bomb or nuclear reactor, for instance, matter is converted into energy. (Perhaps someday science fiction will become a reality and converting the human body into energy and back in a transporter will be commonplace.)
In this chapter, you examine the different states of matter and what happens when matter goes from one state to another. I show you how to use the SI (metric) system to make matter and energy measurements, and I describe types of energy and how energy is measured.
Matter is anything that has mass and occupies space. It can exist in one of three classic states: solid, liquid, and gas. When a substance goes from one state of matter to another, the process is called a change of state, or phase change. Some rather interesting things occur during this process, which I explain in this section.
Particles of matter behave differently depending on whether they're part of a solid, liquid, or gas. As Figure 1-1 shows, the particles may be organized or clumped, close or spread out. In this section, you look at the solid, liquid, and gaseous states of matter.
FIGURE 1-1: Solid, liquid, and gaseous states of matter.
At the macroscopic level, the level at which you directly observe with your senses, a solid has a definite shape and occupies a definite volume. Think of an ice cube in a glass - it's a solid. You can easily weigh the ice cube and measure its volume.
At the microscopic level (where items are so small that people can't directly observe them), the particles that make up the solid are very close together and aren't moving around very much (see Figure 1-1a). That's because in many solids, the particles are pulled into a rigid, organized structure of repeating patterns called a crystal lattice. The particles in the crystal lattice are still moving but barely - it's more of a slight vibration. Depending on the particles, this crystal lattice may be of different shapes.
Unlike solids, liquids have no definite shape; however, they do have a definite volume, just like solids do. The particles in liquids are much farther apart than the particles in solids, and they're also moving around much more (see Figure 1-1b).
Even though the particles are farther apart, some particles in liquids may still be near each other, clumped together in small groups. The attractive forces among the particles aren't as strong as they are in solids, which is why liquids don't have a definite shape. However, these attractive forces are strong enough to keep the substance confined in one large mass - a liquid - instead of going all over the place.
A gas has no definite shape and no definite volume. In a gas, particles are much farther apart than they are in solids or liquids (see Figure 1-1c), and they're moving relatively independent of each other. Because of the distance between the particles and the independent motion of each of them, the gas expands to fill the area that contains it (and thus it has no definite shape).
If you cool a gaseous or liquid substance, you can watch the changes of state, or phase changes, that occur. Here are the phase changes that happen as substances lose energy:
You can summarize the process of water changing from a gas to a solid in this way:
Here, the (l) stands for liquid, the (g) stands for gas, and (s) stands for solid.
As a substance heats, it can change from a solid to a liquid to a gas. For water, you represent the change like this:
This section explains melting and boiling, the changes of state that occur as a substance gains energy.
When a substance melts, it goes from a solid to a liquid state. Here's what happens: If you start with a solid, such as ice, and take temperature readings while heating it, you find that the temperature of the solid begins to rise as the heat causes the particles to vibrate faster and faster in the crystal lattice.
After a while, some of the particles move so fast that they break free of the lattice, and the crystal lattice (which keeps a solid solid) eventually breaks apart. The solid begins to go from a solid state to a liquid state - a process called melting. The temperature at which melting occurs is called the melting point (mp) of the substance. The melting point for ice is , or .
During changes of state, such as melting, the temperature remains constant - even though a liquid contains more energy than a solid. So if you watch the temperature of ice as it melts, you see that the temperature remains steady at until all the ice has melted.
The melting point (solid to a liquid) is the same as the freezing point (liquid to a solid).
The process by which a substance moves from the liquid state to the gaseous state is called boiling.
If you heat a liquid, such as a pot of cool water, the temperature of the liquid rises and the particles move faster and faster as they absorb the heat. The temperature rises until the liquid reaches the next change of state - boiling. As the particles heat up and move faster and faster, they begin to break the attractive forces between each other and move freely as a gas, such as steam, the gaseous form of water.
The temperature at which a liquid begins to boil is called the boiling point (bp). The bp depends on atmospheric pressure, but for water at sea level, it's , or . The temperature of a boiling substance remains constant until all of it has been converted to a gas.
Most substances go through the logical progression from solid to liquid to gas as they're heated (or vice versa as they're cooled). But a few substances go directly from the solid to the gaseous state without ever becoming a liquid. Scientists call this process sublimation. Dry ice - solid carbon dioxide, written as - is the classic example of sublimation. You can see dry ice pieces becoming smaller as the solid begins to turn into a gas, but no liquid forms during this phase change.
The process of sublimation of dry ice is represented as
Besides dry ice, mothballs and certain solid air fresheners also go through the process of sublimation. The reverse of sublimation is deposition - going directly from a gaseous state to a solid state.
One of the basic processes in science is classification. In this section, I explain how all matter can be classified as either a pure substance or a mixture (see Figure 1-2).
FIGURE 1-2: Classifying of matter.
A pure substance, like salt or sugar, has a definite and constant composition or makeup. A pure substance can be either an element or a compound, but the composition of a pure substance doesn't vary.
An element is composed of a single kind of atom. An atom is the smallest particle of an element that still has all the properties of the element. For instance, if you slice and slice a chunk of the element gold until only one tiny particle is left that can't be chopped anymore without losing the properties that make gold gold, then you have an atom. (I discuss properties later in the section "Nice Properties You've Got There.")
The atoms in an element all have the same number of protons. Protons are subatomic particles - particles of an atom. (Chapter 2 covers the three major subatomic particles in...
Dateiformat: ePUBKopierschutz: Adobe-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet – also für „fließenden” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!
Weitere Informationen finden Sie in unserer E-Book Hilfe.