Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
This text examines the goals of data analysis with respect to enhancing knowledge, and identifies data summarization and correlation analysis as the core issues. Data summarization, both quantitative and categorical, is treated within the encoder-decoder paradigm bringing forward a number of mathematically supported insights into the methods and relations between them. Two Chapters describe methods for categorical summarization: partitioning, divisive clustering and separate cluster finding and another explain the methods for quantitative summarization, Principal Component Analysis and PageRank.
Features:
· An in-depth presentation of K-means partitioning including a corresponding Pythagorean decomposition of the data scatter.
· Advice regarding such issues as clustering of categorical and mixed scale data, similarity and network data, interpretation aids, anomalous clusters, the number of clusters, etc.
· Thorough attention to data-driven modelling including a number of mathematically stated relations between statistical and geometrical concepts including those between goodness-of-fit criteria for decision trees and data standardization, similarity and consensus clustering, modularity clustering and uniform partitioning.
New edition highlights:
· Inclusion of ranking issues such as Google PageRank, linear stratification and tied rankings median, consensus clustering, semi-average clustering, one-cluster clustering
· Restructured to make the logics more straightforward and sections self-contained
Core Data Analysis: Summarization, Correlation and Visualization is aimed at those who are eager to participate in developing the field as well as appealing to novices and practitioners.
He develops methods for clustering and interpretation of complex data within the "data recovery" perspective. Currently these approaches are being extended to automation of text analysis problems including the development and use of hierarchical ontologies. He has published a hundred refereed papers and a dozen books, of which the latest are: "Clustering: A Data Recovery Approach" (Chapman and Hall/CRC Press, 2012) and a textbook "Introductory Data Analysis" (In Russian, URAIT Publishers, Moscow, 2016).
Topics in Data Analysis Substance.- Quantitative Summarization.- Learning Correlations.- Core Partitioning: K-Means and Similarity Clustering.- Divisive and Separate Cluster Structures.- Appendix. Basic Math and Code.- Index.
Dateiformat: PDFKopierschutz: Wasserzeichen-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Wasserzeichen-DRM wird hier ein „weicher” Kopierschutz verwendet. Daher ist technisch zwar alles möglich – sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.
Weitere Informationen finden Sie in unserer E-Book Hilfe.