Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
May is the last month of the school year in Tucson, Arizona, USA. At Manzo Elementary School, students lead us on a tour of their school gardens.1 Under the desert sun, shade from fruit trees and the cool touch of goldfish ponds offer respite in this arid city. We stop near a rain tank (Figure 1.1). Chickens peck at bugs and sip water collected from the roof. A desert tortoise peeks out from under an agave plant. At Manzo, students learn science in the garden classrooms. They also develop community-building skills of empathy, leadership, mental wellbeing, and the care work involved in cultivation (Lohr et al. 2022). Manzo students are architects of life, transforming rain into vegetables, flowers, fruit, and eggs. At their weekly market, they sell garden products, manage customers, plan budgets, fix systems, and feed their neighborhood (Figure 1.2).
Figure 1.1 The school gardens at Manzo Elementary School in Tucson, Arizona.
Source: Courtesy of Community and School Gardens Program.
Figure 1.2 The Manzo farmer's market. Here, student leaders explain how they grow vegetables with harvested rainwater and sell their products in a community market.
Source: Katie Meehan (author).
Can a desert support life? Outsiders tend to assume that a desert is a wasteland - a site of scarcity, a harsh landscape devoid of water and therefore life.2 But in the Sonoran Desert, the Manzo students show us how life is infused in every raindrop. Plant flowering coincides with the North American monsoon season of July through September. Thunderhead clouds build pressure and water droplets, then break in dramatic displays of thunder, lightning, and heavy evening rain. Water floods streets and arroyos - trapping cars and washing out paved roads - and recharges rivers and aquifers. Plants bloom, sprout, seed, and germinate in a few crucial weeks. Most of the crops at Manzo are rainfed. Water from the municipal piped network (brought hundreds of miles from the Colorado River) is a backup source.
Water at Manzo is an example of the hydrosocial cycle, the view of water as inseparable from society. A hydrosocial approach argues that water is fundamentally relational (Loftus 2007). Water is the product of social, spatial, and ecological relations - a point of view that positions us (people) as internal to the production of the thing we call "water." The hydrosocial cycle asks questions like: How is water produced? Where is it sourced from and to whom does it flow? What work does water do? And what conditions does a water cycle create?
The hydrosocial thesis comes into focus at the end of the Manzo school tour, as we pause at a colorful mural (Figure 1.3). Our student guides explain that the mural is the traditional Tohono O'odham calendar for weather, agriculture, and ecological knowledge. Experts in dryland agriculture, the Tohono O'odham are Indigenous people of the Sonoran Desert (including Tucson), residing primarily in what is present-day Arizona (USA) and Sonora (Mexico).
Each month marks a water-related event or task. In April, cacti and flora bloom in spectacular colors, following a season of slow winter rains. May is the ideal time to collect beans from mesquite trees, which are dried and ground into flour. In June, the saguaro cactus called ha:san in Tohono O'odham bears fruit called baidaj which ripens in scorching temperatures. June is also the Tohono O'odham new year, called ha:san baidaj (or bak) masad (NAAF 2021). This celebration connects Tohono O'odham lifeways or himdag to the harvest of sweet, fuchsia-colored baidaj. By July - the month of big rains - the North American monsoon cracks open, unleashing torrents of hard rain and thunderclaps across a thirsty desert landscape. At its heart, the O'odham calendar depicts a situated worldview of water and society - the opposite of what scholar Donna Haraway (1988) calls the "view from nowhere" that characterizes modern science. Tohono O'odham Nation citizen and agriculturalist Nacho Littleagle Flores (CSGP 2022) explains how the calendar sustains O'odham culture, identity, and language, and incorporates biogeography, seasonal weather, human labor, and the intimate relations of water.
Figure 1.3 The O'odham calendar at Manzo Elementary School.
A hydrosocial approach opens the sluice to a whole array of radical possibilities. In contrast to the hydrologic cycle, which "naturalizes" the nature and behavior of H2O, the hydrosocial cycle challenges us to ask how "nature" - like a flooded field, a broken dike, a submerged city, a parched town, a thirsty household - comes to be. Why is Jakarta sinking? Why did New Orleans flood when Hurricane Katrina struck the US Gulf Coast in 2005? Why is the Middle East touted as the hot spot for water scarcity? What made "Day Zero" in South Africa such a terrible crisis? What explains the global rise in large dams? Who benefits from clean, safe piped water - and who does not? Why? Why is our world this way? And what can we do about it?
Imagine water in action. What do you see? Nearly every science textbook and school lesson begin with the classic image of the hydrologic cycle: a sweeping visual trace of water's planetary travels through clouds, oceans, lakes, rivers, aquifers, trees, and occasionally a crop field or town. The hydrologic cycle is a cornerstone of water science and expert knowledge. In most textbook versions, water moves seamlessly against a temperate backdrop - a hint of its Northern origins (Linton 2008) - and flows without friction through different sites and states of being.
Water in the hydrologic cycle obeys a supposed "natural" rhythm and logic, neatly illustrated by arrows, names, and occasionally numbers. This water spends a long time underground, and comparatively, just seconds in the upper reaches of the atmosphere. Fueled by energy from the sun, water in the hydrologic cycle flows like a machine: a predictable substance that quietly follows the laws of physics and nature. Precipitation, infiltration, evaporation - these states of water are "scientific" and devoid of human influence or touch. Our task, as students and viewers, is to take notes. And then take a test.
Of course, water does obey rules. Rain falls, according to gravity and physics, even in the Arizona desert. But as the Manzo students remind us, water is more than a simplified scientific representation - which, even on its best days, captures knowledge about water that is important but partial, contingent, and produced (Haraway 1988). Critical scholars have shown us how the very categories of "nature," "technology," "wilderness," and "culture" are not stable and pre-given, but contingent products of human minds, social conventions, colonial histories, state institutions, and positions of privilege (Cronon 1996; Jasanoff 2004; Latour 1993; Ottinger et al. 2016). This critique is true of water. "Our starting point is that the hydrologic cycle is not merely a neutral scientific concept," argue Jamie Linton and Jessica Budds (2014, p. 171), "but can be regarded as a social construct with political consequences." This idea - that knowledge is produced, and no environment is apolitical (Robbins 2019) - anchors the journeys we take in this book.
In the mid-nineteenth century, for example, the US West and British Punjab regions were punctuated by large dams and massive irrigation projects of "desert reclamation" - a topic we explore in more depth in Chapters 2 and 6. These infrastructures were made possible by hydrologic studies and "truths" established by western science. This intellectual position was backed by the foreign capital and development muscle of American and British colonial rule - a confluence of science, capital, and power called the technozone (Akhter and Ormerod 2015). Experts deemed arid environments as "deficient" landscapes in need of development intervention to maximize their full potential as productive landscapes (Koch 2021). Drylands, the message went, must be tamed, properly managed by experts, and "scarce water" should not be wasted. In short, technozone thinking produced a scientific idea of water in desert regions that went hand in glove with large-scale infrastructure and development interventions. As we will analyze, this is not "neutral" knowledge but a political worldview.
The hydrologic cycle is a relatively recent invention. Jamie Linton (2010) explains how the hydrologic cycle emerged during an early twentieth-century struggle among scientists to define hydrology as a "pure natural science" and...
Dateiformat: ePUBKopierschutz: Adobe-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet – also für „fließenden” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!
Weitere Informationen finden Sie in unserer E-Book Hilfe.