Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
This book offers you a hands-on experience using models from OpenAI and the Hugging Face library. You will use various tools and work on small projects, gradually applying the new knowledge you gain.
The book is divided into three parts. Part one covers techniques and libraries. Here, you'll explore different techniques through small examples, preparing to build projects in the next section. You'll learn to use common libraries in the world of Large Language Models. Topics and technologies covered include chatbots, code generation, OpenAI API, Hugging Face, vector databases, LangChain, fine tuning, PEFT fine tuning, soft prompt tuning, LoRA, QLoRA, evaluating models, and Direct Preference Optimization. Part two focuses on projects. You'll create projects, understanding design decisions. Each project may have more than one possible implementation, as there is often not just one good solution. You'll also explore LLMOps-related topics. Part three delves into enterprise solutions. Large Language Models are not a standalone solution; in large corporate environments, they are one piece of the puzzle. You'll explore how to structure solutions capable of transforming organizations with thousands of employees, highlighting the main role that Large Language Models play in these new solutions.
This book equips you to confidently navigate and implement Large Language Models, empowering you to tackle diverse challenges in the evolving landscape of language processing.
What You Will Learn
Who This Book Is For
Data analysts, data science, Python developers, and software professionals interested in learning the foundations of NLP, LLMs, and the processes of building modern LLM applications for various tasks
Pere Martra is a seasoned IT Engineer and AI Enthusiast with years of experience in the financial sector. He is currently pursuing a Master's in Research on Artificial Intelligence. Initially, he delved into the world of AI through his passion for game development. Applying Reinforcement Learning techniques, he infused video game characters with personality and autonomy, sparking his journey into the realm of AI. Today, AI is not just his passion but a pivotal part of his profession. Collaborating with startups on NLP-based solutions, he plays a crucial role in defining technological stacks, architecting solutions, and guiding team inception. As the author of a course on Large Language Models and their applications, available on GitHub, Pere shares his expertise in this cutting-edge field. He serves as a mentor in the TensorFlow Advanced Techniques Specialization at Deeplearning.AI, assisting students in solving problems within their tasks. He holds the distinction of being one of the few TensorFlow Certified Developers in Spain, complementing this achievement with an Azure Data Scientist Associate certification. Follow Pere on Medium, where he writes about AI, emphasizing Large Language Models and deep learning with TensorFlow, contributing valuable insights to TowardsAI.net. Top skills include Keras, Artificial Intelligence (AI), TensorFlow, Generative AI, and Large Language Models (LLM). Connect with Pere on https://www.linkedin.com/in/pere-martra/ for project collaborations or insightful discussions in the dynamic field of AI.
Part I: Techniques and Libraries.- Chapter 1. Introduction to Large Language Models with OpenAI.- Chapter 2: Vector Databases and LLMs.- Chapter 3: LangChain & Agents.- Chapter 4: Evaluating Models.- Chapter 5: Fine-Tuning Models.- Part II: Projects.- Chapter 6: Natural Language to SQL.- Chapter 7: Creating and Publishing Your Own LLM.- Part III: Enterprise solutions.- Chapter 8: Architecting an NL2SQL Project for Immense Enterprise Databases.- Chapter 9: Transforming Banks with Customer Embeddings.
Dateiformat: PDFKopierschutz: Wasserzeichen-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Wasserzeichen-DRM wird hier ein „weicher” Kopierschutz verwendet. Daher ist technisch zwar alles möglich – sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.
Weitere Informationen finden Sie in unserer E-Book Hilfe.