1 - Science of Synthesis: Knowledge Updates 2016/2 [Seite 1]
2 - Title Page [Seite 6]
3 - Copyright [Seite 8]
4 - Preface [Seite 9]
5 - Abstracts [Seite 11]
6 - Science of Synthesis Knowledge Updates 2016/2 [Seite 19]
7 - Table of Contents [Seite 21]
8 - 1.2.7 Radical-Based Palladium-Catalyzed Bond Constructions [Seite 35]
8.1 - 1.2.7.1 Method 1: Reactions Involving Palladium(I) Species [Seite 35]
8.1.1 - 1.2.7.1.1 Variation 1: Synthesis of Organometallic Palladium(I) Complexes [Seite 35]
8.1.2 - 1.2.7.1.2 Variation 2: Reactions Involving Palladium(I) Precatalysts [Seite 42]
8.1.3 - 1.2.7.1.3 Variation 3: Cross-Coupling Reactions [Seite 50]
8.1.4 - 1.2.7.1.4 Variation 4: Carbonylation Reactions [Seite 61]
8.1.5 - 1.2.7.1.5 Variation 5: Cyclization Reactions [Seite 76]
8.1.6 - 1.2.7.1.6 Variation 6: Atom-Transfer Reactions [Seite 82]
8.2 - 1.2.7.2 Method 2: Reactions Involving Palladium(III) Species [Seite 96]
8.2.1 - 1.2.7.2.1 Variation 1: Synthesis of Organometallic Palladium(III) Complexes [Seite 96]
8.2.2 - 1.2.7.2.2 Variation 2: C-H Activation Reactions Involving Palladium(III) [Seite 106]
8.2.3 - 1.2.7.2.3 Variation 3: C-F Bond-Constructing Reactions Involving Palladium(III) [Seite 113]
8.2.4 - 1.2.7.2.4 Variation 4: Reactions Involving Phenyl or Benzoyl Radicals [Seite 116]
8.2.5 - 1.2.7.2.5 Variation 5: Asymmetric Aza-Claisen Rearrangements [Seite 126]
8.3 - 1.2.7.3 Method 3: Reactions Involving Palladium(I) and Palladium(III) Species [Seite 129]
8.4 - 1.2.7.4 Method 4: Miscellaneous Reactions [Seite 132]
9 - 2.11.15 C(sp3)-H Functionalization by Allylic C-H Activation of Zirconocene Complexes [Seite 147]
9.1 - 2.11.15.1 Method 1: Synthesis of Conjugated Dienes from Nonconjugated Dienes [Seite 152]
9.1.1 - 2.11.15.1.1 Variation 1: From Nonheteroatom-Substituted Alkenes [Seite 152]
9.1.2 - 2.11.15.1.2 Variation 2: From Nonconjugated Dienes Bearing an Alkoxy Substituent [Seite 153]
9.2 - 2.11.15.2 Method 2: Synthesis of Trienes [Seite 156]
9.3 - 2.11.15.3 Method 3: Synthesis of Homoallylic Alcohols [Seite 157]
9.3.1 - 2.11.15.3.1 Variation 1: From Acid Chlorides without Ligand Exchange [Seite 157]
9.3.2 - 2.11.15.3.2 Variation 2: From Acid Chlorides with Ligand Exchange [Seite 158]
9.3.3 - 2.11.15.3.3 Variation 3: From Aldehydes without Ligand Exchange [Seite 160]
9.3.4 - 2.11.15.3.4 Variation 4: From Aldehydes with Ligand Exchange [Seite 162]
9.4 - 2.11.15.4 Method 4: Diastereoselective Synthesis of Homoallylic Amines [Seite 163]
9.5 - 2.11.15.5 Method 5: Diastereoselective Synthesis of 1,4-Homoallylic Diols [Seite 164]
9.5.1 - 2.11.15.5.1 Variation 1: From Grignard Reagents [Seite 164]
9.5.2 - 2.11.15.5.2 Variation 2: From Terminal Alkenes [Seite 166]
9.6 - 2.11.15.6 Method 6: Synthesis of 1,2-Disubstituted Cyclopropanols [Seite 167]
9.7 - 2.11.15.7 Method 7: Synthesis of Substituted Allylic Derivatives from Unsaturated Fatty Alcohols [Seite 167]
9.8 - 2.11.15.8 Method 8: Selective Reduction of the Double Bond of ?-Ene Dihydrofurans and Dihydropyrans [Seite 169]
9.9 - 2.11.15.9 Method 9: Synthesis of Acyclic Fragments Possessing an All-Carbon Quaternary Stereogenic Center [Seite 170]
9.9.1 - 2.11.15.9.1 Variation 1: From ?-Ene Cyclopropanes [Seite 170]
9.9.2 - 2.11.15.9.2 Variation 2: From Alkylidenecyclopropanes [Seite 173]
9.9.3 - 2.11.15.9.3 Variation 3: From ?-Alkenylcyclopropanes Bearing a Leaving Group [Seite 176]
10 - 2.11.16 Synthesis and Reactivity of Heteroatom-Substituted Vinylzirconocene Derivatives and Hetarylzirconocenes [Seite 181]
10.1 - 2.11.16.1 General Preparation of Vinylzirconocene Derivatives [Seite 182]
10.2 - 2.11.16.2 General Reactivity of Vinylzirconocene Derivatives [Seite 184]
10.3 - 2.11.16.3 Preparation of Vinylzirconocene Derivatives from Heteroatom-Substituted Alkenes [Seite 185]
10.3.1 - 2.11.16.3.1 Method 1: From Alkenyl Halides [Seite 186]
10.3.2 - 2.11.16.3.2 Method 2: From Aryl Halides [Seite 188]
10.3.3 - 2.11.16.3.3 Method 3: From Enol Sulfonates [Seite 192]
10.3.4 - 2.11.16.3.4 Method 4: From Enol Ethers and Silyl Enol Ethers [Seite 194]
10.3.5 - 2.11.16.3.5 Method 5: From Sulfides, Sulfoxides, and Sulfones [Seite 196]
10.3.6 - 2.11.16.3.6 Method 6: From Carbamates [Seite 200]
10.3.7 - 2.11.16.3.7 Method 7: From Dienyl Systems [Seite 202]
11 - 2.12.17 The Role of Solvents and Additives in Reactions of Samarium(II) Iodide and Related Reductants [Seite 211]
11.1 - 2.12.17.1 Synthesis of Samarium(II) Reductants [Seite 211]
11.1.1 - 2.12.17.1.1 Samarium(II) Iodide [Seite 212]
11.1.1.1 - 2.12.17.1.1.1 Method 1: Synthesis in Tetrahydrofuran from Samarium and 1,2-Diiodoethane [Seite 212]
11.1.1.2 - 2.12.17.1.1.2 Method 2: Synthesis in Tetrahydrofuran from Samarium and Iodine [Seite 213]
11.1.1.3 - 2.12.17.1.1.3 Method 3: Synthesis in Tetrahydropyran [Seite 215]
11.1.1.4 - 2.12.17.1.1.4 Method 4: Synthesis in 1,2-Dimethoxyethane [Seite 215]
11.1.1.5 - 2.12.17.1.1.5 Method 5: Synthesis in Acetonitrile and Other Nitriles [Seite 215]
11.1.1.6 - 2.12.17.1.1.6 Method 6: Synthesis in Benzene/Hexamethylphosphoric Triamide [Seite 217]
11.1.2 - 2.12.17.1.2 Samarium(II) Bromide and Samarium(II) Chloride [Seite 217]
11.1.2.1 - 2.12.17.1.2.1 Method 1: Synthesis of Samarium(II) Bromide from Samarium(III) Oxide and Hydrobromic Acid [Seite 218]
11.1.2.2 - 2.12.17.1.2.2 Method 2: Synthesis of Samarium(II) Bromide from Samarium and 1,1,2,2-Tetrabromoethane [Seite 218]
11.1.2.3 - 2.12.17.1.2.3 Method 3: Synthesis of Samarium(II) Bromide from Samarium(II) Iodide and Lithium Bromide [Seite 219]
11.1.2.4 - 2.12.17.1.2.4 Method 4: Synthesis of Samarium(II) Chloride from Samarium(III) Chloride [Seite 219]
11.1.2.5 - 2.12.17.1.2.5 Method 5: Synthesis of Samarium(II) Chloride from Samarium(II) Iodide and Lithium Chloride [Seite 220]
11.1.2.6 - 2.12.17.1.2.6 Method 6: Synthesis of Samarium(II) Chloride in Water from Samarium(III) Chloride and Samarium [Seite 220]
11.1.3 - 2.12.17.1.3 Samarium(II) Trifluoromethanesulfonate [Seite 221]
11.1.3.1 - 2.12.17.1.3.1 Method 1: Synthesis from Samarium(III) Trifluoromethanesulfonate, Samarium Metal, and Ethylmagnesium Bromide [Seite 221]
11.1.3.2 - 2.12.17.1.3.2 Method 2: Synthesis from Samarium(III) Trifluoromethanesulfonate and sec-Butyllithium [Seite 221]
11.1.3.3 - 2.12.17.1.3.3 Method 3: Synthesis from Samarium Metal and 1,5-Dithioniabicyclo[ 3.3.0]octane Bis(trifluoromethanesulfonate) [Seite 222]
11.1.3.4 - 2.12.17.1.3.4 Method 4: Mercury-Catalyzed Reduction of Samarium(III) Trifluoromethanesulfonate [Seite 223]
11.1.3.5 - 2.12.17.1.3.5 Method 5: Synthesis from Samarium(III) Trifluoromethanesulfonate and Samarium Metal [Seite 223]
11.1.4 - 2.12.17.1.4 Samarium(II) Amides [Seite 224]
11.1.5 - 2.12.17.1.5 (?5-Cyclopentadienyl)samarium(II) Complexes [Seite 224]
11.1.5.1 - 2.12.17.1.5.1 Method 1: Synthesis of Bis(?5-cyclopentadienyl)samarium(II) [Seite 225]
11.1.5.2 - 2.12.17.1.5.2 Method 2: Synthesis of Bis(?5-pentamethylcyclopentadienyl) samarium(II) [Seite 225]
11.2 - 2.12.17.2 Use of Lewis Bases in Samarium(II)-Based Reactions [Seite 225]
11.2.1 - 2.12.17.2.1 Hexamethylphosphoric Triamide [Seite 226]
11.2.1.1 - 2.12.17.2.1.1 Method 1: Reduction of Alkyl and Aryl Halides [Seite 226]
11.2.1.2 - 2.12.17.2.1.2 Method 2: Reduction of ?-Oxygenated Carbonyl Compounds [Seite 226]
11.2.1.3 - 2.12.17.2.1.3 Method 3: Reduction of 4-Methylbenzoates [Seite 228]
11.2.1.4 - 2.12.17.2.1.4 Method 4: Grignard and Barbier Reactions [Seite 229]
11.2.1.4.1 - 2.12.17.2.1.4.1 Variation 1: Intermolecular Samarium Grignard Reactions [Seite 230]
11.2.1.4.2 - 2.12.17.2.1.4.2 Variation 2: Intermolecular Samarium Barbier Reactions [Seite 231]
11.2.1.4.3 - 2.12.17.2.1.4.3 Variation 3: Intramolecular Samarium Barbier Reactions [Seite 234]
11.2.1.5 - 2.12.17.2.1.5 Method 5: Reformatsky- and Aldol-Type Reactions [Seite 234]
11.2.1.6 - 2.12.17.2.1.6 Method 6: Halide-Alkene Coupling Reactions [Seite 235]
11.2.1.7 - 2.12.17.2.1.7 Method 7: Spirocyclization via Intramolecular Aryl Iodide Radical Addition [Seite 236]
11.2.1.8 - 2.12.17.2.1.8 Method 8: Carbonyl-Alkene Coupling [Seite 237]
11.2.1.8.1 - 2.12.17.2.1.8.1 Variation 1: Intramolecular Cyclization of Unactivated Alkenyl Ketones [Seite 237]
11.2.1.8.2 - 2.12.17.2.1.8.2 Variation 2: Sequential Intramolecular Cyclization with Intermolecular Electrophilic Addition [Seite 238]
11.2.1.8.3 - 2.12.17.2.1.8.3 Variation 3: Intermolecular Ketone-Allene Coupling [Seite 239]
11.2.1.8.4 - 2.12.17.2.1.8.4 Variation 4: Sequential Intramolecular Cyclization with Electrophilic Addition to 1H-Indole Derivatives [Seite 239]
11.2.1.9 - 2.12.17.2.1.9 Method 9: Intramolecular Pinacol Coupling of Carbonyl Compounds [Seite 240]
11.2.1.10 - 2.12.17.2.1.10 Method 10: Intramolecular Pinacol-Type Coupling of Ketones and Imines [Seite 241]
11.2.1.11 - 2.12.17.2.1.11 Method 11: Tandem Epoxide-Opening/Cyclization To Afford ?-Lactones [Seite 242]
11.2.1.12 - 2.12.17.2.1.12 Method 12: Tandem Elimination and Coupling of Aliphatic Imides with Carbonyl Compounds [Seite 243]
11.2.1.13 - 2.12.17.2.1.13 Method 13: Intermolecular and Intramolecular Reductive Dimerization [Seite 244]
11.2.2 - 2.12.17.2.2 Additives Related to Hexamethylphosphoric Triamide [Seite 245]
11.2.2.1 - 2.12.17.2.2.1 Method 1: Tri(pyrrolidin-1-yl)phosphine Oxide in Reductive Coupling Reactions [Seite 246]
11.2.2.2 - 2.12.17.2.2.2 Method 2: N-Methyl-P,P-di(pyrrolidin-1-yl)phosphinic Amide in Reductive Cyclization Reactions [Seite 246]
11.2.2.3 - 2.12.17.2.2.3 Method 3: Hydroxylated Hexamethylphosphoric Triamide in Reductive Coupling Reactions [Seite 247]
11.3 - 2.12.17.3 Use of Proton Donors in Samarium(II)-Based Reactions [Seite 248]
11.3.1 - 2.12.17.3.1 Water [Seite 248]
11.3.1.1 - 2.12.17.3.1.1 Method 1: Reduction of Alkyl Iodides [Seite 248]
11.3.1.2 - 2.12.17.3.1.2 Method 2: Reduction of Aromatic Carboxylic Acids, Esters, Amides, and Nitriles [Seite 249]
11.3.1.3 - 2.12.17.3.1.3 Method 3: Reduction of Azido Oligosaccharides to Amino Sugars [Seite 250]
11.3.1.4 - 2.12.17.3.1.4 Method 4: Reduction of Six-Membered Lactones [Seite 251]
11.3.1.5 - 2.12.17.3.1.5 Method 5: Reduction of Cyclic Esters [Seite 252]
11.3.1.6 - 2.12.17.3.1.6 Method 6: Reductive Cyclization of Lactones [Seite 253]
11.3.1.7 - 2.12.17.3.1.7 Method 7: Reduction of Sodium S-Alkyl Thiosulfates and Alkyl Thiocyanates [Seite 254]
11.3.1.8 - 2.12.17.3.1.8 Method 8: Reduction of Cyclic 1,3-Diesters [Seite 255]
11.3.1.9 - 2.12.17.3.1.9 Method 9: Cross Coupling of N-Acyloxazolidinones to Acrylamides and Acrylates [Seite 256]
11.3.1.10 - 2.12.17.3.1.10 Method 10: Coupling To Produce ?,?-Disubstituted Pyrrolidin-2-ylmethanols [Seite 257]
11.3.1.11 - 2.12.17.3.1.11 Method 11: Reductive Coupling of Nitrones and Acrylates [Seite 257]
11.3.2 - 2.12.17.3.2 Water and Amines [Seite 258]
11.3.2.1 - 2.12.17.3.2.1 Method 1: Reduction of Ketones [Seite 259]
11.3.2.2 - 2.12.17.3.2.2 Method 2: Reduction of ?-Hydroxy Ketones [Seite 259]
11.3.2.3 - 2.12.17.3.2.3 Method 3: Reduction of Alkyl Halides [Seite 260]
11.3.2.4 - 2.12.17.3.2.4 Method 4: Reduction of Double and Triple Bonds in Conjugated Alkenes [Seite 261]
11.3.2.5 - 2.12.17.3.2.5 Method 5: Deprotection of Allyl Ether Protected Alcohols [Seite 262]
11.3.2.6 - 2.12.17.3.2.6 Method 6: Deprotection of Toluenesulfonamides [Seite 263]
11.3.2.7 - 2.12.17.3.2.7 Method 7: Reduction of Nitroalkanes [Seite 264]
11.3.2.8 - 2.12.17.3.2.8 Method 8: Reductive Cleavage of Benzyl-Heteroatom Bonds [Seite 265]
11.3.2.9 - 2.12.17.3.2.9 Method 9: Reduction of Nitriles [Seite 266]
11.3.2.10 - 2.12.17.3.2.10 Method 10: Reduction of Unactivated Esters [Seite 267]
11.3.2.11 - 2.12.17.3.2.11 Method 11: Reduction of Amides to Alcohols [Seite 269]
11.3.2.12 - 2.12.17.3.2.12 Method 12: Reduction of Carboxylic Acids to Alcohols [Seite 270]
11.3.2.13 - 2.12.17.3.2.13 Method 13: Intramolecular Coupling of Aryl Iodides with Alkenyl and Alkynyl Groups [Seite 271]
11.3.3 - 2.12.17.3.3 Methanol [Seite 272]
11.3.3.1 - 2.12.17.3.3.1 Method 1: Stereoselective Reduction of ?-Hydroxy Ketones to anti- 1,3-Diols [Seite 272]
11.3.3.2 - 2.12.17.3.3.2 Method 2: Reductive Cyclization of ?-Halo ?,?-Unsaturated Esters [Seite 272]
11.3.3.3 - 2.12.17.3.3.3 Method 3: Ring Expansion of Alkyl (n + 1)-Oxobicyclo[n.1.0]alkane- 1-carboxylates [Seite 273]
11.3.3.4 - 2.12.17.3.3.4 Method 4: Cyclization of ?,?-Unsaturated Ketones To Afford syn-Cyclopentanols [Seite 274]
11.3.4 - 2.12.17.3.4 tert-Butyl Alcohol [Seite 275]
11.3.4.1 - 2.12.17.3.4.1 Method 1: Reductive Cyclization of Carbodiimides to Indolin-2-amines [Seite 275]
11.3.4.2 - 2.12.17.3.4.2 Method 2: Cross Coupling of Chiral N-(tert-Butylsulfinyl)imines with Aldehydes [Seite 276]
11.3.5 - 2.12.17.3.5 Glycols [Seite 277]
11.3.5.1 - 2.12.17.3.5.1 Method 1: Synthesis of Uracils [Seite 277]
11.3.6 - 2.12.17.3.6 2-(Dimethylamino)ethanol [Seite 278]
11.3.6.1 - 2.12.17.3.6.1 Method 1: Reductive Ring Opening of Aziridine-2-carboxylates and Aziridine- 2-carboxamides to ?-Amino Esters and Amides [Seite 278]
11.3.6.2 - 2.12.17.3.6.2 Method 2: Simple Functional Group Reductions Using Samarium(II) Iodide/2-(Dimethylamino)ethanol [Seite 279]
11.4 - 2.12.17.4 Use of Inorganic Additives in Samarium(II)-Based Reactions [Seite 280]
11.4.1 - 2.12.17.4.1 Transition-Metal Additives [Seite 281]
11.4.1.1 - 2.12.17.4.1.1 Method 1: Carbonyl-Alkene Coupling Reactions [Seite 281]
11.4.1.2 - 2.12.17.4.1.2 Method 2: Barbier Coupling Reactions [Seite 283]
11.4.2 - 2.12.17.4.2 LithiumHalide Salts [Seite 284]
11.4.2.1 - 2.12.17.4.2.1 Method 1: Intramolecular Coupling of Isocyanates and Cyclic ?,?-Unsaturated Ketones [Seite 284]
11.4.2.2 - 2.12.17.4.2.2 Method 2: Cross Coupling of Nitrones with Allenoates [Seite 285]
11.5 - 2.12.17.5 Impact of Solvents on Reactivity in Samarium-Mediated Reductions and Coupling Reactions [Seite 286]
11.5.1 - 2.12.17.5.1 Coordinating Solvents (Other than Tetrahydrofuran) [Seite 286]
11.5.1.1 - 2.12.17.5.1.1 Method 1: Coupling of Ketones with Acid Chlorides in Tetrahydropyran [Seite 286]
11.5.1.2 - 2.12.17.5.1.2 Method 2: Coupling of Allylic and Benzylic Samarium Compounds with Ketones and Esters in Tetrahydropyran [Seite 287]
11.5.1.3 - 2.12.17.5.1.3 Method 3: Reduction of ?-Hydroxy Ketones in 1,2-Dimethoxyethane [Seite 288]
11.5.1.4 - 2.12.17.5.1.4 Method 4: Reductive Intramolecular Ketyl-Alkene Coupling in Acetonitrile [Seite 289]
11.5.1.5 - 2.12.17.5.1.5 Method 5: 2,3-Wittig Rearrangement by Partial Reduction of Diallyl Acetals in Acetonitrile [Seite 290]
11.5.1.6 - 2.12.17.5.1.6 Method 6: Coupling of ?-Chloro ?,?-Unsaturated Aryl Ketones to Aldehydes in Acetonitrile [Seite 291]
11.5.1.7 - 2.12.17.5.1.7 Method 7: Coupling of Carbonyls in Pivalonitrile [Seite 291]
11.5.2 - 2.12.17.5.2 Non-coordinating Solvents [Seite 293]
11.5.2.1 - 2.12.17.5.2.1 Method 1: Barbier-Type Coupling of Aryl Halides and Ketones in Benzene/Hexamethylphosphoric Triamide [Seite 293]
11.5.2.2 - 2.12.17.5.2.2 Method 2: Coupling of Iodoalkynes and Carbonyl Compounds in Benzene/Hexamethylphosphoric Triamide [Seite 294]
11.5.2.3 - 2.12.17.5.2.3 Method 3: Reduction of Dithioacetals to Sulfides in Benzene/Hexamethylphosphoric Triamide [Seite 295]
11.5.2.4 - 2.12.17.5.2.4 Method 4: Reductive Defluorination in Hexane [Seite 295]
12 - 30.1.3 Carbohydrate Derivatives (Including Nucleosides) [Seite 301]
12.1 - 30.1.3.1 Glycosyl Asparagine Derivatives [Seite 302]
12.1.1 - 30.1.3.1.1 Method 1: Synthesis from Glycosyl Imidates [Seite 302]
12.1.2 - 30.1.3.1.2 Method 2: Synthesis from Pent-4-enyl Glycosides [Seite 304]
12.1.3 - 30.1.3.1.3 Method 3: Synthesis from Thioglycosides [Seite 305]
12.1.4 - 30.1.3.1.4 Method 4: Synthesis from Glycals [Seite 306]
12.1.4.1 - 30.1.3.1.4.1 Variation 1: Other C-N Bonds from Glycals [Seite 309]
12.1.5 - 30.1.3.1.5 Method 5: Synthesis from Glycosyl Halides [Seite 309]
12.1.6 - 30.1.3.1.6 Method 6: Synthesis from Glycosyl Isothiocyanates [Seite 310]
12.1.7 - 30.1.3.1.7 Method 7: Synthesis from N-Glycosyl Hydroxylamines [Seite 311]
12.1.8 - 30.1.3.1.8 Method 8: Synthesis from Glycosyl Azides [Seite 312]
12.2 - 30.1.3.2 Ribonucleosides [Seite 313]
12.2.1 - 30.1.3.2.1 Method 1: Synthesis from Glycosyl Acetates [Seite 314]
12.2.2 - 30.1.3.2.2 Method 2: Synthesis from Glycosyl Halides [Seite 316]
12.2.3 - 30.1.3.2.3 Method 3: Synthesis from Glycosyl Imidates [Seite 317]
12.2.4 - 30.1.3.2.4 Method 4: Synthesis from Thioglycosides [Seite 319]
12.2.5 - 30.1.3.2.5 Method 5: Synthesis from Glycosyl 2-Alk-1-ynylbenzoates [Seite 320]
12.2.6 - 30.1.3.2.6 Method 6: Synthesis from Glycosylamines [Seite 321]
12.3 - 30.1.3.3 2-Deoxyribonucleosides [Seite 321]
12.3.1 - 30.1.3.3.1 Method 1: Synthesis from Glycosyl Halides [Seite 321]
12.3.2 - 30.1.3.3.2 Method 2: Synthesis from Thioglycosides [Seite 322]
12.4 - 30.1.3.4 Other Deoxyfuranosides [Seite 324]
12.4.1 - 30.1.3.4.1 Method 1: Synthesis from Glycals [Seite 324]
12.4.2 - 30.1.3.4.2 Method 2: Synthesis from Thioglycosides [Seite 325]
13 - 30.2.3 O,P-Acetals (Update 2016) [Seite 329]
13.1 - 30.2.3.1 Method 1: Addition of Phosphorus Compounds to Ketones or Aldehydes [Seite 329]
13.1.1 - 30.2.3.1.1 Variation 1: Diastereoselective Hydrophosphonylation [Seite 335]
13.1.2 - 30.2.3.1.2 Variation 2: Enantioselective, Metal-Catalyzed Addition of Phosphites to Aldehydes (Pudovik Reaction) [Seite 337]
13.1.3 - 30.2.3.1.3 Variation 3: Enantioselective, Organocatalyzed Addition of Phosphites to Aldehydes (Pudovik Reaction) [Seite 341]
13.1.4 - 30.2.3.1.4 Variation 4: Enantioselective, Metal-Catalyzed Addition of Phosphites to Ketones (Pudovik Reaction) [Seite 345]
13.1.5 - 30.2.3.1.5 Variation 5: Enantioselective, Organocatalyzed Addition of Phosphites to Ketones (Pudovik Reaction) [Seite 346]
13.2 - 30.2.3.2 Method 2: Kinetic Resolution of ?-Hydroxy Phosphonates [Seite 347]
13.3 - 30.2.3.3 Method 3: Oxidation of ?,?-Unsaturated Phosphorus Compounds [Seite 348]
13.4 - 30.2.3.4 Method 4: Addition of Phosphorus Compounds to O,O-Acetals [Seite 349]
13.5 - 30.2.3.5 Method 5: Reduction/Hydrogenation [Seite 350]
13.6 - 30.2.3.6 Method 6: Aldol-Type Reactions and Other Reactions Using Carbon Nucleophiles [Seite 354]
14 - 30.3.1.3 Acyclic S,S-Acetals (Update 2016) [Seite 363]
14.1 - 30.3.1.3.1 Method 1: Thioacetalization of Carbonyl Compounds [Seite 363]
14.1.1 - 30.3.1.3.1.1 Variation 1: With Metal Salt Based Lewis Acid Catalysts [Seite 363]
14.1.2 - 30.3.1.3.1.2 Variation 2: With Non-Metal Lewis Acid Catalysts [Seite 367]
14.1.3 - 30.3.1.3.1.3 Variation 3: With Solid-Supported Lewis Acid Catalysts [Seite 369]
14.1.4 - 30.3.1.3.1.4 Variation 4: With Solid Acid Catalysts [Seite 372]
14.1.5 - 30.3.1.3.1.5 Variation 5: In Micelles [Seite 374]
14.1.6 - 30.3.1.3.1.6 Variation 6: Without Acid Catalysis [Seite 374]
14.2 - 30.3.1.3.2 Method 2: Conversion of O,O-Acetals [Seite 375]
14.2.1 - 30.3.1.3.2.1 Variation 1: In Micelles [Seite 375]
14.2.2 - 30.3.1.3.2.2 Variation 2: With Odorless Thiol Equivalents [Seite 376]
14.3 - 30.3.1.3.3 Method 3: Addition of Thiols to C-C Multiple Bonds [Seite 377]
14.3.1 - 30.3.1.3.3.1 Variation 1: Addition to Propargyl Alcohols [Seite 377]
14.3.2 - 30.3.1.3.3.2 Variation 2: Addition to Allenes [Seite 378]
14.3.3 - 30.3.1.3.3.3 Variation 3: Addition to Alkynes [Seite 379]
14.4 - 30.3.1.3.4 Method 4: Addition of Disulfides to Methylenecyclopropanes [Seite 381]
14.5 - 30.3.1.3.5 Method 5: Ring Opening of 1,2-Cyclopropanated 3-Oxo Sugars with Thiols [Seite 382]
15 - 30.3.6.3 Acyclic and Cyclic S,S-Acetal S-Oxides and S,S¢-Dioxides (Update 2016) [Seite 385]
15.1 - 30.3.6.3.1 Synthesis of Acyclic and Cyclic S,S-Acetal S-Oxides and S,S'-Dioxides [Seite 385]
15.1.1 - 30.3.6.3.1.1 Method 1: Reactions of ?-Sulfanyl ?-Sulfinyl Carbanions [Seite 385]
15.1.1.1 - 30.3.6.3.1.1.1 Variation 1: Monoalkylation with Alkyl or Hetaryl Halides, Epoxides, or Enones [Seite 385]
15.1.1.2 - 30.3.6.3.1.1.2 Variation 2: Condensation with Carbonyl Compounds [Seite 386]
15.1.2 - 30.3.6.3.1.2 Method 2: Oxidation Reactions [Seite 388]
15.1.2.1 - 30.3.6.3.1.2.1 Variation 1: Oxidation of S,S-Acetals [Seite 388]
15.1.2.2 - 30.3.6.3.1.2.2 Variation 2: Oxidation of Ketene S,S-Acetals [Seite 390]
15.1.2.3 - 30.3.6.3.1.2.3 Variation 3: Oxidation of ?-Sulfanyl Vinyl Sulfenates [Seite 392]
15.1.3 - 30.3.6.3.1.3 Method 3: Addition of S,S-Acetal S,S'-Dioxides to Carbonyl Compounds [Seite 394]
15.1.4 - 30.3.6.3.1.4 Method 4: Conjugate Addition to Ketene S,S-Acetal S-Oxides and S,S'-Dioxides [Seite 395]
15.1.5 - 30.3.6.3.1.6 Method 6: Cross-Coupling of Ketene S,S-Acetal S-Oxides [Seite 400]
15.2 - 30.3.6.3.2 Applications of Acyclic and Cyclic S,S-Acetal S-Oxides and S,S'-Dioxides in Organic Synthesis [Seite 401]
15.2.1 - 30.3.6.3.2.1 Method 1: Synthesis of Aldehydes from S,S-Acetal S,S'-Dioxides [Seite 401]
15.2.2 - 30.3.6.3.2.2 Method 2: Synthesis of Carboxylic Acid Derivatives from S,S-Acetal S,S'-Dioxides [Seite 402]
15.2.3 - 30.3.6.3.2.3 Method 3: Synthesis of ?-Amino Acid Derivatives [Seite 404]
15.2.4 - 30.3.6.3.2.4 Method 4: Synthesis of Heteroaromatic Compounds [Seite 405]
15.2.5 - 30.3.6.3.2.5 Method 5: Miscellaneous Reactions of S,S-Acetal S-Oxides and S,S-Acetal S,S'-Dioxides [Seite 408]
16 - 30.5.6 Selenium- and Tellurium-Containing Acetals (Update 2016) [Seite 413]
16.1 - 30.5.6.1 S,Se- and S,Te-Acetals [Seite 413]
16.1.1 - 30.5.6.1.1 Method 1: Reaction between Selenium Dihalides and Divinyl Sulfide or Divinyl Sulfone [Seite 413]
16.1.2 - 30.5.6.1.2 Method 2: Selanylation-Deselanylation Process To Introduce a C=C Bond [Seite 414]
16.1.3 - 30.5.6.1.3 Method 3: Electrochemical Fluoroselanylation of Vinyl Sulfones [Seite 415]
16.2 - 30.5.6.2 Se,Se- and Se,Te-Acetals [Seite 416]
16.2.1 - 30.5.6.2.1 Method 1: Palladium-Catalyzed Double Hydroselanylation of Alkynes [Seite 416]
16.2.2 - 30.5.6.2.2 Method 2: Lewis Acid Catalyzed Conversion of Methylenecyclopropanes into 1,1-Bis(organoselanyl)cyclobutanes [Seite 417]
16.2.3 - 30.5.6.2.3 Method 3: Indium/Chlorotrimethylsilane Promoted Selenoacetalization of Aldehydes Using Diorganyl Diselenides [Seite 418]
16.2.4 - 30.5.6.2.4 Method 4: Diselanylation of Dihaloalkanes with 1-(Organoselanyl)perfluoroalkanols [Seite 418]
16.2.5 - 30.5.6.2.5 Method 5: Diselanylation of Dihaloalkanes Using Selenolate Anions [Seite 419]
16.3 - 30.5.6.3 Te,Te-Acetals [Seite 420]
16.3.1 - 30.5.6.3.1 Method 1: In Situ Generation and Reaction of Tellurocarbamates with Dihaloalkanes [Seite 420]
16.4 - 30.5.6.4 Se,N-Acetals [Seite 421]
16.4.1 - 30.5.6.4.1 Method 1: Phosphoric Acid Catalyzed Addition of Benzeneselenol to an N-Acylimine [Seite 421]
16.4.2 - 30.5.6.4.2 Method 2: 1,3-Dipolar Cycloaddition Reactions between Azidomethyl Aryl Selenides and Alkynes (Click Reactions) [Seite 421]
16.4.3 - 30.5.6.4.3 Method 3: Base-Promoted Selanylation Using Se-[2-(Trimethylsilyl)ethyl] 4-Methylbenzoselenoate [Seite 423]
16.4.4 - 30.5.6.4.4 Method 4: Synthesis of 4'-Selenonucleosides by Pummerer Condensation [Seite 424]
16.4.5 - 30.5.6.4.5 Method 5: Synthesis of 3'-Azido-4'-selenonucleosides and Related Derivatives [Seite 428]
16.4.6 - 30.5.6.4.6 Method 6: [2 + 2] Cyclization of S,Se-Diphenyl Carbonimidoselenothioates with Ketene Equivalents [Seite 430]
16.4.7 - 30.5.6.4.7 Method 7: Reactions of Selenoamide Dianions with N,N-Disubstituted Thio- or Selenoformamides [Seite 431]
16.4.8 - 30.5.6.4.8 Method 8: Photoinduced Di-?-methane Rearrangement of 3-(Organoselanyl)- 5H-2,5-methanobenzo[f][1,2]thiazepine 1,1-Dioxide [Seite 432]
16.4.9 - 30.5.6.4.9 Method 9: Decarboxylative Selanylation of Acids [Seite 432]
16.4.10 - 30.5.6.4.10 Method 10: Base-Promoted Alkylation of ?-Selanyl Nitroalkanes [Seite 433]
16.4.11 - 30.5.6.4.11 Method 11: Reaction of Bromoalkanes with Selenium/Sodium Borohydride [Seite 433]
16.4.12 - 30.5.6.4.12 Method 12: Selanylation of (Chloromethyl)benzotriazoles [Seite 434]
16.4.13 - 30.5.6.4.13 Method 13: Synthesis of (Arylselanyl)methyl-Functionalized Imidazolium Ionic Liquids [Seite 434]
16.4.14 - 30.5.6.4.14 Method 14: Application of N-[(Phenylselanyl)methyl]phthalimide as a Reagent for Protecting Alcohols as Phthalimidomethyl Ethers [Seite 434]
16.5 - 30.5.6.5 Se,P- and Te,P-Acetals [Seite 435]
16.5.1 - 30.5.6.5.1 Method 1: Diels-Alder Reaction of Selenoaldehydes and Phosphole Chalcogenides [Seite 435]
16.5.2 - 30.5.6.5.2 Method 2: Michaelis-Arbuzov Reaction of Chloromethyl Phenyl Selenide [Seite 436]
16.5.3 - 30.5.6.5.3 Method 3: Reaction between a Phosphorylmethyl 4-Toluenesulfonate and Sodium Selenide or Telluride [Seite 436]
16.5.4 - 30.5.6.5.4 Method 4: Base-Promoted Reaction between Bis[(diphenylphosphoryl) methyl] Telluride and Chalcones [Seite 437]
17 - 30.7.3 N,P- and P,P-Acetals (Update 2016) [Seite 441]
17.1 - 30.7.3.1 N,P-Acetals [Seite 441]
17.1.1 - 30.7.3.1.1 Synthesis of N,P-Acetals [Seite 441]
17.1.1.1 - 30.7.3.1.1.1 Method 1: Cross Dehydrogenative Coupling of Amines and Phosphonates [Seite 441]
17.1.1.1.1 - 30.7.3.1.1.1.1 Variation 1: Using a Copper Catalyst under an Oxygen Atmosphere [Seite 442]
17.1.1.1.2 - 30.7.3.1.1.1.2 Variation 2: Using an Iron Catalyst and tert-Butyl Hydroperoxide as Co-oxidant [Seite 442]
17.1.1.2 - 30.7.3.1.1.2 Method 2: Aldehyde-Induced C-H Substitution with Phosphine Oxides [Seite 443]
17.1.1.3 - 30.7.3.1.1.3 Method 3: Electrophilic Amination [Seite 444]
17.1.1.4 - 30.7.3.1.1.4 Method 4: Aldehyde-Induced Decarboxylative Coupling of ?-Amino Acids and Phosphonates [Seite 445]
17.1.1.4.1 - 30.7.3.1.1.4.1 Variation 1: Using Copper/N,N-Diisopropylethylamine Catalyst [Seite 446]
17.1.1.4.2 - 30.7.3.1.1.4.2 Variation 2: Without Catalyst [Seite 447]
17.1.1.5 - 30.7.3.1.1.5 Method 5: Substitution of ?-Hydroxyphosphonates with Amines [Seite 447]
17.1.1.5.1 - 30.7.3.1.1.5.1 Variation 1: Under Microwave Irradiation [Seite 448]
17.1.1.5.2 - 30.7.3.1.1.5.2 Variation 2: Using Trifluoromethanesulfonic Acid [Seite 448]
17.1.1.6 - 30.7.3.1.1.6 Method 6: Substitution of ?-Amido Sulfones with Organophosphorus Compounds [Seite 449]
17.1.1.7 - 30.7.3.1.1.7 Method 7: Substitution of Dichloromethane with Tertiary Amines and Organophosphorus Compounds [Seite 450]
17.1.1.8 - 30.7.3.1.1.8 Method 8: Asymmetric Hydrogenation of ?-Enamido Phosphonates [Seite 451]
17.1.1.9 - 30.7.3.1.1.9 Method 9: Reduction of ?-Iminophosphonates [Seite 452]
17.1.1.10 - 30.7.3.1.1.10 Method 10: 1,4-Addition of Aryltrifluoroborates to a-Enamido Phosphonates [Seite 453]
17.1.1.11 - 30.7.3.1.1.11 Method 11: Addition of Carbon Nucleophiles to ?-Iminophosphonates [Seite 454]
17.1.1.11.1 - 30.7.3.1.1.11.1 Variation 1: Using Terminal Alkynes [Seite 454]
17.1.1.11.2 - 30.7.3.1.1.11.2 Variation 2: Using Pyruvonitrile [Seite 455]
17.1.1.12 - 30.7.3.1.1.12 Method 12: Hydrophosphorylation of Imines (Pudovik Reaction) [Seite 456]
17.1.1.12.1 - 30.7.3.1.1.12.1 Variation 1: Using a Chiral Aluminum-Salalen Catalyst [Seite 457]
17.1.1.12.2 - 30.7.3.1.1.12.2 Variation 2: Using a Chiral Tethered Bis(quinolin-8-olato)aluminum Catalyst [Seite 458]
17.1.1.12.3 - 30.7.3.1.1.12.3 Variation 3: Using Cinchona Alkaloid Catalysts [Seite 459]
17.1.1.12.4 - 30.7.3.1.1.12.4 Variation 4: Using a Chiral Copper Catalyst [Seite 460]
17.1.1.12.5 - 30.7.3.1.1.12.5 Variation 5: Using a Chiral Auxiliary [Seite 461]
17.1.1.13 - 30.7.3.1.1.13 Method 13: Three-Component Coupling Reaction of Amines, Carbonyl Compounds, and Phosphonates (Kabachnik-Fields Reaction) [Seite 462]
17.1.1.13.1 - 30.7.3.1.1.13.1 Variation 1: Using a Magnesium Perchlorate Catalyst [Seite 462]
17.1.1.13.2 - 30.7.3.1.1.13.2 Variation 2: Using a Chiral Phosphoric Acid Catalyst [Seite 463]
17.1.1.14 - 30.7.3.1.1.14 Method 14: Reductive Phosphorylation of Amides [Seite 465]
17.1.1.15 - 30.7.3.1.1.15 Method 15: Hydroamination and Hydrophosphorylation of Alkynes [Seite 465]
17.1.1.16 - 30.7.3.1.1.16 Method 16: Asymmetric Isomerization of ?-Iminophosphonates [Seite 467]
17.1.1.17 - 30.7.3.1.1.17 Method 17: Consecutive Reaction of Methyleneaziridines with Organomagnesium Chlorides, Organic Bromides, and Phosphonates [Seite 468]
17.1.1.18 - 30.7.3.1.1.18 Method 18: Three-Component Coupling of ?-Diazophosphonates, Anilines, and Aldehydes [Seite 469]
17.1.2 - 30.7.3.1.2 Applications of N,P-Acetals in Organic Synthesis [Seite 470]
17.1.2.1 - 30.7.3.1.2.1 Method 1: Horner-Wadsworth-Emmons Alkenation [Seite 470]
17.1.2.2 - 30.7.3.1.2.2 Method 2: Intramolecular Hydroamination of ?-Aminophosphonates Possessing an Alkynyl Group [Seite 471]
17.1.2.2.1 - 30.7.3.1.2.2.1 Variation 1: Via 5-exo-dig Cyclization Using a Palladium Catalyst [Seite 472]
17.1.2.2.2 - 30.7.3.1.2.2.2 Variation 2: Via 6-endo-dig Cyclization Using a Silver Catalyst [Seite 472]
17.1.2.3 - 30.7.3.1.2.3 Method 3: [3 + 2] Cycloaddition with Alkenes [Seite 473]
17.2 - 30.7.3.2 P,P-Acetals [Seite 474]
17.2.1 - 30.7.3.2.1 Synthesis of P,P-Acetals [Seite 475]
17.2.1.1 - 30.7.3.2.1.1 Method 1: Consecutive Phosphorylation of Carbanions [Seite 475]
17.2.1.2 - 30.7.3.2.1.2 Method 2: Phosphorylation of ?-Phosphoryl Carbanions [Seite 476]
17.2.1.2.1 - 30.7.3.2.1.2.1 Variation 1: Generated from Alkylphosphonates [Seite 476]
17.2.1.2.2 - 30.7.3.2.1.2.2 Variation 2: Via Phospha-Claisen Condensation [Seite 477]
17.2.1.2.3 - 30.7.3.2.1.2.3 Variation 3: Generated from Phosphine Sulfides [Seite 478]
17.2.1.2.4 - 30.7.3.2.1.2.4 Variation 4: Generated from Phosphine-Boranes [Seite 480]
17.2.1.3 - 30.7.3.2.1.3 Method 3: Synthesis from ?-Chloroalkylphosphonates, Organoboranes, and Chlorophosphines [Seite 480]
17.2.1.4 - 30.7.3.2.1.4 Method 4: Substitution of ?-Silylphosphines with Chlorophosphines [Seite 482]
17.2.1.5 - 30.7.3.2.1.5 Method 5: Consecutive Substitution of Dihaloalkanes with Organophosphorus Nucleophiles [Seite 483]
17.2.1.5.1 - 30.7.3.2.1.5.1 Variation 1: Using Phosphides [Seite 483]
17.2.1.5.2 - 30.7.3.2.1.5.2 Variation 2: Using Phosphites (Michaelis-Arbuzov Reaction) [Seite 485]
17.2.1.6 - 30.7.3.2.1.6 Method 6: Substitution of Organophosphorus Compounds Possessing a Leaving Group at the ?-Position with Organophosphorus Nucleophiles [Seite 485]
17.2.1.6.1 - 30.7.3.2.1.6.1 Variation 1: Using Phosphides [Seite 486]
17.2.1.6.2 - 30.7.3.2.1.6.2 Variation 2: Using Phosphites (Michaelis-Arbuzov Reaction) [Seite 487]
17.2.1.7 - 30.7.3.2.1.7 Method 7: Conjugate Addition to Vinylidenebisphosphonates [Seite 487]
17.2.1.7.1 - 30.7.3.2.1.7.1 Variation 1: Using Aldehydes in the Presence of an Organocatalyst [Seite 488]
17.2.1.7.2 - 30.7.3.2.1.7.2 Variation 2: Using Boronic Acids in the Presence of a Copper Catalyst [Seite 488]
17.2.2 - 30.7.3.2.2 Applications of P,P-Acetals in Organic Synthesis [Seite 489]
17.2.2.1 - 30.7.3.2.2.1 Method 1: Alkylation of gem-Bisphosphorus Compounds [Seite 489]
17.2.2.2 - 30.7.3.2.2.2 Method 2: Horner-Wadsworth-Emmons Alkenation [Seite 490]
18 - Author Index [Seite 497]
19 - Abbreviations [Seite 513]
Abstracts
1.2.7 Radical-Based Palladium-Catalyzed Bond Constructions
Y. Li, W. Xie, and X. Jiang
Palladium(0) and palladium(II) species are frequently used as catalysts and are considered to be active intermediates in traditional palladium-catalyzed coupling reactions, participating in oxidative addition and reductive elimination via two-electron-transfer processes. Meanwhile, the catalytic modes involving palladium(I) and palladium(III) have been gradually developed. Single-electron-transfer pathways are thought to be involved via related catalytic cycles. Various palladium(I) and palladium(III) complexes have been synthesized and characterized. The palladium(I) precatalysts in Suzuki coupling and Buchwald-Hartwig amination exhibit higher reactivity than traditional palladium(0) and palladium(II) catalysts. Palladium-catalyzed single-electron-transfer conditions allow alkyl halides to participate in a series of cross-coupling, carbonylation, atom-transfer, and cyclization reactions, in which the palladium(I) species and various alkyl radicals are thought to be key intermediates. Palladium(III) species have been proposed as active intermediates in various directed C-H activation reactions. Moreover, it has been proved that palladium(III) intermediates can catalyze C-F bond formation and asymmetric Claisen rearrangement reactions. Beyond these systems, it is thought that palladium(I) and palladium(III) species might take part in the same system. In summary, radical-type palladium-catalyzed systems possess new properties which help to realize various otherwise difficult transformations.
Keywords: bond construction · palladium(I) catalysis · palladium(III) catalysis · radical processes
2.11.15 C(sp3)-H Functionalization by Allylic C-H Activation of Zirconocene Complexes
A. Vasseur and J. Bruffaerts
Zirconocene-assisted allylic C(sp3)-H activation allows the remote functionalization of alkenes through multipositional migration of the olefinic double bond as a communicative process between two distant sites. The transformation involves the successive formation of zirconacyclopropane species along an alkyl chain. This C-H activation promoted migration proceeds rapidly under mild conditions. Moreover, it occurs in a unidirectional manner if associated with thermodynamically favored termination steps such as elimination, selective carbon-carbon bond activation, or ring expansion. The remotely formed zirconocene species can subsequently react with a variety of electrophilic carbon, oxygen, or nitrogen reagents to give a wide range of added-value products from simple substrates. Transmetalation processes further increase the synthetic potential by allowing the remote formation of a new carbon-carbon bond. The global transformation is not only stereo- and regioselective, but also enables the relay of stereochemical information. Alternatively, a ziconacyclopropane/crotylzirconocene hydride equilibrium can be promoted under particular reaction conditions, leading to direct regio- and stereoselective allylation reactions with acid chloride, aldehyde, diketone and imine derivatives.
Keywords: zirconocenes · allylic C-H activation · alkenes · conjugated dienes · trienes · homoallylic alcohols · homoallylic amines · alkenylcyclopropanes · cyclopropanols · diastereoselectivity · quaternary stereocenters
2.11.16 Synthesis and Reactivity of Heteroatom-Substituted Vinylzirconocene Derivatives and Hetarylzirconocenes
J. Bruffaerts and A. Vasseur
Reactive and stereodefined vinylzirconocene derivatives are efficiently prepared from a variety of different heterosubstituted alkenes in the presence of a stoichiometric amount of the Negishi reagent. This chapter describes the synthesis of these compounds along with their applications in the synthesis of various substituted alkenes.
Keywords: organometallic compounds · zirconocenes · alkenes · vinyl compounds · stereoselective synthesis · elimination
2.12.17 The Role of Solvents and Additives in Reactions of Samarium(II) Iodide and Related Reductants
T. V. Chciuk and R. A. Flowers, II
The use of additives with samarium(II) iodide (SmI2) greatly impacts the rate, diastereoselectivity, and chemoselectivity of its reactions. Additives that are commonly utilized with samarium(II) iodide and other samarium(II)-based reductants can be classified into three major groups: (1) Lewis bases such as hexamethylphosphoric triamide (HMPA) and other electron-donor ligands and chelating ethers; (2) proton donors, such as water, alcohols, and glycols; and (3) inorganic additives such as nickel(II) iodide, iron(III) chloride, and lithium chloride. In addition, the solvent milieu can also play an important role in the reactivity of samarium(II) reductants, predominantly through changes in the coordination sphere of the metal. The main focus of this chapter is on the use of additives and solvent milieu to provide selective and efficient reactions, with at least one example being given for each subclass of samarium(II)-promoted reaction.
Keywords: cross-coupling reactions · electron transfer · hexamethylphosphoric triamide · inorganic additives · intramolecular cyclization · Lewis bases · proton donors · reductive coupling · ring expansion · samarium(II) iodide · solvent effects
30.1.3 Carbohydrate Derivatives (Including Nucleosides)
T. Nokami
O,N-Acetals are found in various types of organic molecules and are core motifs in carbohydrates, including nucleosides. This chapter summarizes the synthetic methods to prepare N-linked glycopeptides, ribonucleosides, 2-deoxyribonucleosides, and others. Glycosylation between the anomeric carbon and the nitrogen atom of a nucleophile is a conventional method for the synthesis of these molecules, but stereoselectivity highly depends on the structures of the substrates. Glycosylamines are also important precursors for the stereoselective synthesis of N-linked glycopeptides and ribonucleosides.
Keywords: aminoglycosides · carbohydrates · glycopeptides · glycosylation · nucleosides
30.2.3 O,P-Acetals
K. Murai and H. Fujioka
This chapter is an update to the earlier Science of Synthesis contribution (Section 30.2) describing methods for the synthesis of O,P-acetals. It focuses on the literature published in the period 2006-2015. Key methods covered include the addition of phosphorus compounds to carbonyl groups (including enantioselective variations), kinetic resolution of a-hydroxyphosphonates, oxidation of a,ß-unsaturated phosphorus compounds, addition of phosphorus compounds to O,O-acetals, reduction of acylphosphonates and related compounds, and aldol-type reactions of keto phosphonates.
Keywords: O,P-acetals · asymmetric synthesis · diastereoselectivity · enantioselectivity · kinetic resolution · hydrogenation · organocatalysis · oxidation · epoxidation · reduction · phosphorus compounds · Pudovik reaction
30.3.1.3 Acyclic S, S-Acetals
A. Tsubouchi
This chapter is an update to the earlier Science of Synthesis contribution (Section 30.3.1) describing methods for the preparation of acyclic S,S-acetals. It focuses on the literature published in the period 2006-2014, presenting complementary information with respect to new developments and transformations. It also contains an important extension of the coverage of the previous contribution. Key methods covered include the thioacetalization of carbonyl compounds using a variety of catalysts, conversion of O,O-acetals, addition of thiols to C-C multiple bonds, addition of disulfides to methylenecyclopropanes, and ring opening of 1,2-cyclopropanated 3-oxo sugars with thiols.
Keywords: acetals · carbonyl compounds · chemoselectivity · Lewis acid catalysts · S,S-acetals · supported catalysis · surfactants · thiols · ring opening
30.3.6.3 Acyclic and Cyclic S, S-Acetal S-Oxides and S, S´-Dioxides
A. Ishii
This chapter is an update to the earlier Science of Synthesis contribution (Section 30.3.6) published in 2007. S,S-Acetal S-oxides and S,S´-dioxides are synthesized by the reaction of sulfanyl- or sulfinyl-stabilized carbanions with electrophiles or by the (asymmetric) oxidation of S,S-acetals. Reaction of a carbanion with an aldehyde or ketone followed by dehydration provides ketene S,S-acetal oxides. Recent advances in synthetic application have been seen in conjugate additions of nucleophiles or radicals to ketene S,S-acetal oxides and in reactions utilizing reactive sulfonium intermediates generated by treatment with acid anhydrides (Pummerer conditions).
Keywords: sulfur-stabilized carbanions · asymmetric oxidation ·...