Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
The sixteen-volume set, CCIS 2282-2297, constitutes the refereed proceedings of the 31st International Conference on Neural Information Processing, ICONIP 2024, held in Auckland, New Zealand, in December 2024.The 472 regular papers presented in this proceedings set were carefully reviewed and selected from 1301 submissions. These papers primarily focus on the following areas: Theory and algorithms; Cognitive neurosciences; Human-centered computing; and Applications.
Fine-tuning Fine-tuned Models: Towards a Practical Methodology for Sentiment Analysis with Small In-domain Supervised Dataset.- End-to-end Knowledge Graph Construction System Powered by LargeLanguage Models.- EPRVR: Efficient Partially Relevant Video Retrieval with Disentangled Video Representation Learning.- Graph-Based Data Augmentation and Label Noise Identification forEntity Resolution.- Patient Mortality prediction Using Clinical Notes.- ScaleDoc: A Two-Stage Approach for Scale-Aware Document Dewarping.- CCUH:CLIP-Based Clustering Method for Unsupervised Hashing Multi-Modal Retrieval.- A Privacy-Preserving Image Classification Framework with Transformer.- Reversible Data Hiding in Dual Encrypted Images with Dual Data Embedding.- A Dual-Layer Reversible Data Hiding Scheme Based on Optimal Neighbor Mean Interpolation (ONMI) and Histogram Shifting.- Threat Intelligence Entity Recognition Based On Large Language Model With Contrastive Learning.- GTSD: Generative Text Steganography Based on Diffusion Model.- Enhanced Autoencoder Model for Robust Anomaly Detection in Financial Fraud with Imbalanced Data.- Membership Inference Attacks in Text Classification Tasks.- PURVEY-CE: A Complex texture adaptive image steganography based on channel attention.- Air-Sniffing Analytics Enhancing Wi-Fi Device Identification with Robust and Accurate Techniques.- Spikewhisper: Temporal Spike Backdoor Attacks on Federated Neuromorphic Learning over Low-power Devices.- Control ControlNet: Multidimensional Backdoor Attack based on ControlNet.- CPANet: Convolutional Parameter Adapter Network for ImageCopy-Move Forgery Detection and Localization.- AO-UAP: An Adaptive Universal Adversarial Perturbation Generation for Speech Recognition Models.- A Hilbert-Curve based Encoding scheme for Privacy-preserving Nearest-Neighbor Classification.- ZKP-HGNN: A Study on Improving Zero- Knowledge Proof (ZKP) Based on Heterogeneous Graph Neural Networks for Anonymous Digital Identity Sharing in Blockchain.- Adversarial Knowledge Extraction via Steering Diffusion Models.- Solving the Thinnest Path Problem with Hypergraph Learning.- AISSGR: Attack Investigation Based on Self-Supervised Graph Representation Learning.- Two-stage optimized adversarial patch for attacking infrared vehicle detectors in the physical world.- Deep Learning-Based Detection of Code Execution Vulnerabilities in Binary Programs.- Towards Real-Time Audio Deepfake Detection in Resource-LimitedEnvironments.- Detecting Audio Deepfakes through Emotional Fingerprinting.- Constructing Multi-Detector Decision Forest for Fake Speech Detection.- KDAE: Kernel Density Auto-Encoder for Semi-Supervised Anomaly Detection with Limited Labeled Data.
Dateiformat: PDFKopierschutz: Wasserzeichen-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Wasserzeichen-DRM wird hier ein „weicher” Kopierschutz verwendet. Daher ist technisch zwar alles möglich – sogar eine unzulässige Weitergabe. Aber an sichtbaren und unsichtbaren Stellen wird der Käufer des E-Books als Wasserzeichen hinterlegt, sodass im Falle eines Missbrauchs die Spur zurückverfolgt werden kann.
Weitere Informationen finden Sie in unserer E-Book Hilfe.