1 - Science of Synthesis: Knowledge Updates 2012/1 [Seite 1]
1.1 - Title page [Seite 5]
1.2 - Imprint [Seite 7]
1.3 - Preface [Seite 8]
1.4 - Abstracts [Seite 10]
1.5 - Overview [Seite 18]
1.6 - Table of Contents [Seite 20]
1.7 - Volume 2: Compounds of Groups 7-3 (Mn···, Cr···, V···, Ti···, Sc···, La···, Ac···) [Seite 38]
1.7.1 - 2.10 Product Class 10: Organometallic Complexes of Titanium [Seite 38]
1.7.1.1 - 2.10.19 Organometallic Complexes of Titanium (Update 1) [Seite 38]
1.7.1.1.1 - 2.10.19.1 Titanium-Mediated Synthesis of Cyclopropyl Derivatives [Seite 38]
1.7.1.1.1.1 - 2.10.19.1.1 Synthesis of Cyclopropanes without Heteroatom Substitution [Seite 39]
1.7.1.1.1.1.1 - 2.10.19.1.1.1 Method 1: Synthesis from Thioacetals and Thioethers [Seite 39]
1.7.1.1.1.1.2 - 2.10.19.1.1.2 Method 2: Synthesis from 1,1-Dihalides [Seite 44]
1.7.1.1.1.2 - 2.10.19.1.2 Synthesis of Cyclopropanols [Seite 45]
1.7.1.1.1.2.1 - 2.10.19.1.2.1 Synthesis from Carboxylic Acid Esters [Seite 45]
1.7.1.1.1.2.1.1 - 2.10.19.1.2.1.1 Method 1: Use of Grignard Reagents without Ligand Exchange [Seite 45]
1.7.1.1.1.2.1.2 - 2.10.19.1.2.1.2 Method 2: Use of Alkenes and Grignard Reagents [Seite 50]
1.7.1.1.1.2.1.2.1 - 2.10.19.1.2.1.2.1 Variation 1: Bicyclo[n.1.0]alkan-1-ols from Unsaturated Carboxylic Acid Esters [Seite 50]
1.7.1.1.1.2.1.2.2 - 2.10.19.1.2.1.2.2 Variation 2: 2-(Hydroxyalkyl)cyclopropanols from Unsaturated Carboxylic Acid Esters [Seite 53]
1.7.1.1.1.2.1.2.3 - 2.10.19.1.2.1.2.3 Variation 3: Cyclopropanols from Carboxylic Acid Esters and Alkenes [Seite 54]
1.7.1.1.1.2.2 - 2.10.19.1.2.2 Synthesis from Lactones and Other Acid Derivatives [Seite 57]
1.7.1.1.1.2.2.1 - 2.10.19.1.2.2.1 Method 1: Synthesis from Lactones [Seite 57]
1.7.1.1.1.2.2.2 - 2.10.19.1.2.2.2 Method 2: Synthesis from Other Acid Derivatives [Seite 58]
1.7.1.1.1.3 - 2.10.19.1.3 Synthesis of Cyclopropanone Hemiacetals [Seite 59]
1.7.1.1.1.3.1 - 2.10.19.1.3.1 Method 1: Synthesis from Cyclic Carbonates [Seite 59]
1.7.1.1.1.4 - 2.10.19.1.4 Synthesis of Cyclopropylamines [Seite 60]
1.7.1.1.1.4.1 - 2.10.19.1.4.1 Synthesis from Tertiary Amides [Seite 60]
1.7.1.1.1.4.1.1 - 2.10.19.1.4.1.1 Method 1: Use of Grignard Reagents without Ligand Exchange [Seite 61]
1.7.1.1.1.4.1.2 - 2.10.19.1.4.1.2 Method 2: Use of Organozinc Reagents without Ligand Exchange [Seite 65]
1.7.1.1.1.4.1.3 - 2.10.19.1.4.1.3 Method 3: Use of Alkenes and Grignard Reagents [Seite 65]
1.7.1.1.1.4.1.3.1 - 2.10.19.1.4.1.3.1 Variation 1: Bicyclo[n.1.0]alkan-1-amine Derivatives from Unsaturated Carboxylic Amides [Seite 66]
1.7.1.1.1.4.1.3.2 - 2.10.19.1.4.1.3.2 Variation 2: 2-Azabicyclo[n.1.0]alkane Derivatives from Unsaturated Carboxylic Amides [Seite 68]
1.7.1.1.1.4.1.3.3 - 2.10.19.1.4.1.3.3 Variation 3: Cyclopropylamines from Tertiary Amides and Alkenes [Seite 69]
1.7.1.1.1.4.2 - 2.10.19.1.4.2 Synthesis from Nitriles [Seite 72]
1.7.1.1.1.4.2.1 - 2.10.19.1.4.2.1 Method 1: Use of Grignard Reagents without Ligand Exchange [Seite 72]
1.7.1.1.1.4.2.1.1 - 2.10.19.1.4.2.1.1 Variation 1: Alkylcyclopropylamines from Aliphatic Nitriles [Seite 72]
1.7.1.1.1.4.2.1.2 - 2.10.19.1.4.2.1.2 Variation 2: 1-Aryl- and 1-Alkenylcyclopropylamines from Unsaturated Nitriles [Seite 78]
1.7.1.1.1.4.2.2 - 2.10.19.1.4.2.2 Method 2: Use of Alkenes and Grignard Reagents [Seite 80]
1.7.1.1.1.4.2.2.1 - 2.10.19.1.4.2.2.1 Variation 1: Bicyclic Cyclopropylamines from Unsaturated Nitriles [Seite 80]
1.7.1.1.1.4.2.2.2 - 2.10.19.1.4.2.2.2 Variation 2: Cyclopropylamines from Nitriles and Alkenes [Seite 81]
1.7.1.1.1.4.3 - 2.10.19.1.4.3 Synthesis from Imides [Seite 82]
1.7.1.1.1.4.3.1 - 2.10.19.1.4.3.1 Method 1: Synthesis from Formimides or Cyclic Imides [Seite 82]
1.8 - Volume 4: Compounds of Group 15 (As, Sb, Bi) and Silicon Compounds [Seite 88]
1.8.1 - 4.4 Product Class 4: Silicon Compounds [Seite 88]
1.8.1.1 - 4.4.1 Product Subclass 1: Disilenes [Seite 88]
1.8.1.1.1 - Synthesis of Product Subclass 1 [Seite 90]
1.8.1.1.1.1 - 4.4.1.1 Method 1: Synthesis of Acyclic Disilenes [Seite 90]
1.8.1.1.1.1.1 - 4.4.1.1.1 Variation 1: Photolysis of Linear Trisilanes [Seite 90]
1.8.1.1.1.1.2 - 4.4.1.1.2 Variation 2: Photolysis of Cyclotrisilanes [Seite 91]
1.8.1.1.1.1.3 - 4.4.1.1.3 Variation 3: Reductive Dehalogenation of 1,1-Dihalosilanes [Seite 91]
1.8.1.1.1.1.4 - 4.4.1.1.4 Variation 4: Reductive Dehalogenation of 1,2-Dihalodisilanes [Seite 94]
1.8.1.1.1.1.5 - 4.4.1.1.5 Variation 5: Coupling of a 1,1-Dilithiosilane with Dihalosilanes [Seite 94]
1.8.1.1.1.1.6 - 4.4.1.1.6 Variation 6: Coupling of Alkali Metal Disilenides with Electrophiles [Seite 95]
1.8.1.1.1.1.7 - 4.4.1.1.7 Variation 7: Addition to Disilynes [Seite 97]
1.8.1.1.1.1.8 - 4.4.1.1.8 Variation 8: Other Methods [Seite 97]
1.8.1.1.1.2 - 4.4.1.2 Method 2: Synthesis of Tetrasilabutadienes [Seite 99]
1.8.1.1.1.3 - 4.4.1.3 Method 3: Synthesis of Cyclic Disilenes [Seite 100]
1.9 - Volume 8: Compounds of Group 1 (Li···Cs) [Seite 106]
1.9.1 - 8.1 Product Class 1: Lithium Compounds [Seite 106]
1.9.1.1 - 8.1.31 Functionalized Organolithiums by Ring Opening of Heterocycles [Seite 106]
1.9.1.1.1 - 8.1.31.1 Three-Membered Heterocycles [Seite 107]
1.9.1.1.1.1 - 8.1.31.1.1 Method 1: Oxiranes [Seite 107]
1.9.1.1.1.2 - 8.1.31.1.2 Method 2: Aziridines [Seite 112]
1.9.1.1.2 - 8.1.31.2 Four-Membered Heterocycles [Seite 114]
1.9.1.1.2.1 - 8.1.31.2.1 Method 1: Oxetanes [Seite 114]
1.9.1.1.2.2 - 8.1.31.2.2 Method 2: Azetidines [Seite 118]
1.9.1.1.2.3 - 8.1.31.2.3 Method 3: Thietanes [Seite 119]
1.9.1.1.3 - 8.1.31.3 Five-Membered Heterocycles [Seite 119]
1.9.1.1.3.1 - 8.1.31.3.1 Method 1: Oxygen-Containing Compounds [Seite 121]
1.9.1.1.3.1.1 - 8.1.31.3.1.1 Variation 1: Tetrahydrofurans [Seite 121]
1.9.1.1.3.1.2 - 8.1.31.3.1.2 Variation 2: Dioxolanes and Oxazolidines [Seite 122]
1.9.1.1.3.1.3 - 8.1.31.3.1.3 Variation 3: Benzo[b]furans [Seite 126]
1.9.1.1.3.1.4 - 8.1.31.3.1.4 Variation 4: Phthalans [Seite 128]
1.9.1.1.3.2 - 8.1.31.3.2 Method 2: Nitrogen-Containing Compounds: Pyrrolidines [Seite 131]
1.9.1.1.3.3 - 8.1.31.3.3 Method 3: Sulfur-Containing Compounds [Seite 133]
1.9.1.1.4 - 8.1.31.4 Six-Membered Heterocycles [Seite 134]
1.9.1.1.4.1 - 8.1.31.4.1 Method 1: Oxygen-Containing Compounds [Seite 134]
1.9.1.1.4.1.1 - 8.1.31.4.1.1 Variation 1: Saturated Oxygen-Containing Heterocycles [Seite 134]
1.9.1.1.4.1.2 - 8.1.31.4.1.2 Variation 2: 1-Benzopyrans [Seite 135]
1.9.1.1.4.1.3 - 8.1.31.4.1.3 Variation 3: 2-Benzopyrans [Seite 137]
1.9.1.1.4.2 - 8.1.31.4.2 Method 2: Nitrogen-Containing Compounds: Tetrahydroisoquinolines [Seite 138]
1.9.1.1.4.3 - 8.1.31.4.3 Method 3: Sulfur-Containing Compounds [Seite 140]
1.9.1.1.5 - 8.1.31.5 Seven-Membered Heterocycles [Seite 141]
1.9.1.1.5.1 - 8.1.31.5.1 Method 1: Dibenzo Oxygen-, Nitrogen-, and Sulfur-Containing Seven-Membered Heterocycles [Seite 141]
1.9.1.1.5.2 - 8.1.31.5.2 Method 2: Dinaphtho Oxygen- and Sulfur-Containing Seven-Membered Heterocycles [Seite 143]
1.9.1.1.6 - 8.1.31.6 Other Heterocycles [Seite 144]
1.9.1.1.6.1 - 8.1.31.6.1 Method 1: Benzodioxins, Benzoxathiins, Dihydrobenzodioxepins, and Dihydronaphthodioxocins [Seite 144]
1.9.1.1.6.2 - 8.1.31.6.2 Method 2: Phenoxathiin, Phenothiazine, and Thianthrene [Seite 147]
1.9.1.2 - 8.1.32 Syntheses Mediated by a-Lithiated Epoxides and Aziridines [Seite 152]
1.9.1.2.1 - 8.1.32.1 Oxiranyllithiums [Seite 152]
1.9.1.2.1.1 - 8.1.32.1.1 2-Alkyl-Substituted Oxiranyllithiums [Seite 153]
1.9.1.2.1.1.1 - 8.1.32.1.1.1 Method 1: Reactions with Electrophiles [Seite 153]
1.9.1.2.1.1.1.1 - 8.1.32.1.1.1.1 Variation 1: Stereospecific Trapping [Seite 153]
1.9.1.2.1.1.1.2 - 8.1.32.1.1.1.2 Variation 2: Asymmetric Lithiation and Trapping of meso-Oxiranes [Seite 154]
1.9.1.2.1.1.1.3 - 8.1.32.1.1.1.3 Variation 3: Coupling with Boronic Esters: Synthesis of Polyoxygenated Compounds [Seite 155]
1.9.1.2.1.1.2 - 8.1.32.1.1.2 Method 2: Enantioselective a-Deprotonation-Rearrangement of meso-Oxiranes [Seite 156]
1.9.1.2.1.1.2.1 - 8.1.32.1.1.2.1 Variation 1: Synthesis of Bicyclic Alcohols by Transannular C--H Insertion [Seite 156]
1.9.1.2.1.1.2.2 - 8.1.32.1.1.2.2 Variation 2: Synthesis of (-)-Xialenon [Seite 157]
1.9.1.2.1.1.2.3 - 8.1.32.1.1.2.3 Variation 3: Effect of Lewis Acids on Transannular C--H Insertion Reactions [Seite 157]
1.9.1.2.1.1.2.4 - 8.1.32.1.1.2.4 Variation 4: Enantioselective Rearrangement of exo-Norbornene Oxide to Nortricyclanol [Seite 158]
1.9.1.2.1.1.2.5 - 8.1.32.1.1.2.5 Variation 5: Transannular C--H Insertion in Lithiated 7-(tert-Butoxycarbonyl)-7-azanorbornene Oxide [Seite 159]
1.9.1.2.1.1.3 - 8.1.32.1.1.3 Method 3: Construction of Nitrogen-Containing Heterocyclic Compounds by Desymmetrization of meso-Epoxides [Seite 160]
1.9.1.2.1.1.4 - 8.1.32.1.1.4 Method 4: Synthesis of Alkenes by Reductive Alkylation [Seite 161]
1.9.1.2.1.1.4.1 - 8.1.32.1.1.4.1 Variation 1: Synthesis of Enantioenriched Unsaturated Diols [Seite 162]
1.9.1.2.1.1.4.2 - 8.1.32.1.1.4.2 Variation 2: Synthesis of Enamines from Terminal Epoxides [Seite 163]
1.9.1.2.1.1.5 - 8.1.32.1.1.5 Method 5: Intramolecular Cyclopropanation of Unsaturated Terminal Epoxides (C==C Insertion) [Seite 164]
1.9.1.2.1.1.5.1 - 8.1.32.1.1.5.1 Variation 1: Stereospecific Synthesis of Bicyclic Alcohols [Seite 164]
1.9.1.2.1.1.5.2 - 8.1.32.1.1.5.2 Variation 2: Synthesis of (-)-Sabina Ketone [Seite 165]
1.9.1.2.1.1.6 - 8.1.32.1.1.6 Method 6: Isomerization of a-Lithiated Epoxides to Ketones: 1,2-Hydrogen Migration [Seite 166]
1.9.1.2.1.2 - 8.1.32.1.2 2-Aryl-Substituted Oxiranyllithiums [Seite 167]
1.9.1.2.1.2.1 - 8.1.32.1.2.1 Method 1: Reactions of 2-Phenyloxiran-2-yllithiums [Seite 167]
1.9.1.2.1.2.1.1 - 8.1.32.1.2.1.1 Variation 1: Stereospecific Trapping with Electrophiles [Seite 167]
1.9.1.2.1.2.1.2 - 8.1.32.1.2.1.2 Variation 2: Stereoselective Synthesis of Antifungal Agents [Seite 168]
1.9.1.2.1.2.2 - 8.1.32.1.2.2 Method 2: Reactions of 3-Substituted 2-Phenyloxiran-2-yllithiums [Seite 169]
1.9.1.2.1.2.2.1 - 8.1.32.1.2.2.1 Variation 1: Of 3-Methyl-2-phenyloxiran-2-yllithiums [Seite 169]
1.9.1.2.1.2.2.2 - 8.1.32.1.2.2.2 Variation 2: Of 2-Lithiated 2,3-Diphenyloxiranes [Seite 169]
1.9.1.2.1.2.3 - 8.1.32.1.2.3 Method 3: Reactions of 2-Aryloxiran-2-yllithiums [Seite 171]
1.9.1.2.1.2.4 - 8.1.32.1.2.4 Method 4: Stereoselective Synthesis of Cyclopropanes [Seite 173]
1.9.1.2.1.2.5 - 8.1.32.1.2.5 Method 5: Stereoselective Synthesis of ß,.-Epoxyhydroxylamines and 4-(Hydroxyalkyl)-1,2-oxazetidines [Seite 174]
1.9.1.2.1.2.6 - 8.1.32.1.2.6 Method 6: Stereocontrolled Synthesis of 1,2-Diols by Homologation of Boronic Esters with Lithiated 2-Phenyloxirane [Seite 175]
1.9.1.2.1.2.7 - 8.1.32.1.2.7 Method 7: Oxiranyl Anion Methodology Using Microflow Systems [Seite 177]
1.9.1.2.1.3 - 8.1.32.1.3 Lithiated Dihydrooxazol-2-yloxiranes [Seite 178]
1.9.1.2.1.3.1 - 8.1.32.1.3.1 Method 1: Reactions of 2-Lithiated 2-(4,5-Dihydrooxazol-2-yl)oxiranes [Seite 178]
1.9.1.2.1.3.1.1 - 8.1.32.1.3.1.1 Variation 1: Configurational Stability of a-Lithiated (4,5-Dihydrooxazol-2-yl)oxiranes: Trapping with Electrophiles [Seite 178]
1.9.1.2.1.3.1.2 - 8.1.32.1.3.1.2 Variation 2: Synthesis of 2-Acyldihydrooxazoles [Seite 179]
1.9.1.2.1.3.1.3 - 8.1.32.1.3.1.3 Variation 3: Synthesis of Cyclopropane-Fused .-Lactones [Seite 180]
1.9.1.2.1.3.1.4 - 8.1.32.1.3.1.4 Variation 4: Synthesis of a-Epoxy-ß-amino Acids [Seite 181]
1.9.1.2.1.3.2 - 8.1.32.1.3.2 Method 2: Reactions of 2-Lithiated 3-(4,5-Dihydrooxazol-2-yl)oxiranes [Seite 184]
1.9.1.2.1.3.2.1 - 8.1.32.1.3.2.1 Variation 1: Configurational Stability of 2-Lithiated 3-(4,5-Dihydrooxazol-2-yl)oxiranes: Trapping with Electrophiles [Seite 184]
1.9.1.2.1.3.2.2 - 8.1.32.1.3.2.2 Variation 2: Synthesis of a,ß-Epoxy-.-butyrolactones [Seite 185]
1.9.1.2.1.3.2.3 - 8.1.32.1.3.2.3 Variation 3: Synthesis of a,ß-Epoxy-.-amino Acids and a,ß-Epoxy-.-butyrolactams [Seite 186]
1.9.1.2.1.3.3 - 8.1.32.1.3.3 Method 3: 2-Lithiation of Terminal 3-(4,5-Dihydrooxazol-2-yl)oxiranes [Seite 189]
1.9.1.2.1.4 - 8.1.32.1.4 2-Trifluoromethyl-Stabilized Oxiranyllithium [Seite 190]
1.9.1.2.1.4.1 - 8.1.32.1.4.1 Method 1: 2-(Trifluoromethyl)oxiranyllithium: Stereospecific Trapping with Electrophiles [Seite 190]
1.9.1.2.1.4.2 - 8.1.32.1.4.2 Method 2: 2-(Trifluoromethyl)oxiranyllithium as Precursor of the Oxiranylzinc [Seite 190]
1.9.1.2.1.5 - 8.1.32.1.5 Lactone-Derived Oxiranyllithiums [Seite 191]
1.9.1.2.1.5.1 - 8.1.32.1.5.1 Method 1: Reactions of Oxiranyllithiums Derived from a,ß-Epoxy-.-butyrolactones [Seite 191]
1.9.1.2.1.6 - 8.1.32.1.6 Silyloxiranyllithiums [Seite 193]
1.9.1.2.1.6.1 - 8.1.32.1.6.1 Method 1: Lithiation of 3-Vinyloxiran-2-ylsilanes [Seite 193]
1.9.1.2.1.6.2 - 8.1.32.1.6.2 Method 2: Lithiation of 3-Alkyloxiran-2-ylsilanes [Seite 194]
1.9.1.2.1.7 - 8.1.32.1.7 2-Sulfonyloxiranyllithiums [Seite 195]
1.9.1.2.1.7.1 - 8.1.32.1.7.1 Method 1: 2-Sulfonyloxiranyllithiums: Configurational Stability and Trapping with Electrophiles [Seite 195]
1.9.1.2.1.7.2 - 8.1.32.1.7.2 Method 2: Construction of Polycyclic Ethers [Seite 196]
1.9.1.2.1.8 - 8.1.32.1.8 2-Lithiated 2-(Benzotriazol-1-yl)oxiranes [Seite 198]
1.9.1.2.1.8.1 - 8.1.32.1.8.1 Method 1: Synthesis of 2-(Benzotriazol-1-yl)oxiranyllithiums with Subsequent Trapping [Seite 198]
1.9.1.2.1.9 - 8.1.32.1.9 2-Lithiated 2-(Benzothiazol-2-yl)oxiranes [Seite 198]
1.9.1.2.1.9.1 - 8.1.32.1.9.1 Method 1: Synthesis of 2-(Benzothiazol-2-yl)oxiranyllithiums with Subsequent Trapping [Seite 198]
1.9.1.2.1.10 - 8.1.32.1.10 Oxiranyllithiums by Transmetalation [Seite 200]
1.9.1.2.1.10.1 - 8.1.32.1.10.1 Method 1: Lithium-Tin Transmetalation [Seite 200]
1.9.1.2.1.10.2 - 8.1.32.1.10.2 Method 2: Lithium-Aluminum and Lithium-Zirconium Transmetalation [Seite 200]
1.9.1.2.1.10.2.1 - 8.1.32.1.10.2.1 Variation 1: Synthesis of Alkylated (Triphenylsilyl)alkenes: Reaction of a 2-Lithiated 2-(Triphenylsilyl)oxirane with Organoaluminum Reagents [Seite 200]
1.9.1.2.1.10.2.2 - 8.1.32.1.10.2.2 Variation 2: Insertion of Metalated Epoxides into Zirconacycles [Seite 201]
1.9.1.2.1.10.2.3 - 8.1.32.1.10.2.3 Variation 3: Insertion of Metalated Epoxynitriles into Chlorobis(.5-cyclopentadienyl)organozirconium Reagents [Seite 202]
1.9.1.2.1.10.2.4 - 8.1.32.1.10.2.4 Variation 4: Insertion of 2-Lithiated 2-(Phenylsulfonyl)oxiranes into Alkenylchlorobis(.5-cyclopentadienyl)zirconium Reagents [Seite 203]
1.9.1.2.1.11 - 8.1.32.1.11 Remotely Stabilized Lithiated Epoxides [Seite 205]
1.9.1.2.1.11.1 - 8.1.32.1.11.1 Method 1: Remotely Stabilized Lithiated Epoxides: Reactions with Aldehydes [Seite 205]
1.9.1.2.1.11.2 - 8.1.32.1.11.2 Method 2: Synthesis of Xylobovide [Seite 206]
1.9.1.2.2 - 8.1.32.2 a-Lithiated Aziridines [Seite 207]
1.9.1.2.2.1 - 8.1.32.2.1 Lithiation-Trapping Sequence of Aziridines with an Electron-Withdrawing Group at the Carbon Atom [Seite 208]
1.9.1.2.2.1.1 - 8.1.32.2.1.1 Method 1: Synthesis of 1-Alkylaziridine-2-carboxylates [Seite 208]
1.9.1.2.2.1.2 - 8.1.32.2.1.2 Method 2: Synthesis of 1-Alkylaziridine-2-carbothioates [Seite 209]
1.9.1.2.2.1.3 - 8.1.32.2.1.3 Method 3: Reactions of 2-(4,5-Dihydrooxazol-2-yl)-Substituted 1-Phenylaziridines [Seite 210]
1.9.1.2.2.1.4 - 8.1.32.2.1.4 Method 4: Reactions of 2,3-Dihetaryl-Substituted 1-Phenylaziridines [Seite 211]
1.9.1.2.2.1.5 - 8.1.32.2.1.5 Method 5: Reactions of 2-(4,5-Dihydrooxazol-2-yl)-Substituted 1-Tritylaziridines [Seite 213]
1.9.1.2.2.1.5.1 - 8.1.32.2.1.5.1 Variation 1: Synthesis of N-Tritylepimino-.-butyrolactones [Seite 214]
1.9.1.2.2.1.6 - 8.1.32.2.1.6 Method 6: Reactions of 2-(4,5-Dihydrooxazol-2-yl)-Substituted 1-Benzylaziridines [Seite 215]
1.9.1.2.2.1.7 - 8.1.32.2.1.7 Method 7: Reactions of 2-(4,5-Dihydrooxazol-2-yl)-Substituted 1-(1-Phenylethyl)aziridines [Seite 216]
1.9.1.2.2.1.8 - 8.1.32.2.1.8 Method 8: Synthesis of C-Substituted 1-Phenyl-2-sulfonylaziridines [Seite 218]
1.9.1.2.2.2 - 8.1.32.2.2 Lithiation of Aziridines with an Electron-Withdrawing Group at Nitrogen [Seite 219]
1.9.1.2.2.2.1 - 8.1.32.2.2.1 Method 1: C-Alkylation of 1-(tert-Butylsulfonyl)-2-phenylaziridine [Seite 219]
1.9.1.2.2.2.1.1 - 8.1.32.2.2.1.1 Variation 1: Synthesis of 2-Substituted 1-(tert-Butylsulfonyl)-2-phenylaziridines Using Microreactor Technology [Seite 220]
1.9.1.2.2.2.1.2 - 8.1.32.2.2.1.2 Variation 2: Synthesis of (tert-Butylsulfonyl)amino Alcohols [Seite 221]
1.9.1.2.2.2.2 - 8.1.32.2.2.2 Method 2: Synthesis of 2-Alkyl-Substituted 1-(tert-Butylsulfonyl)-3-(trimethylsilyl)aziridines [Seite 222]
1.9.1.2.2.2.3 - 8.1.32.2.2.3 Method 3: Synthesis of 2-Substituted 1-(tert-Butylsulfonyl)aziridines [Seite 223]
1.9.1.2.2.2.3.1 - 8.1.32.2.2.3.1 Variation 1: Synthesis of 2-Substituted 1-(tert-Butylsulfonyl)aziridines Using Microreactor Technology [Seite 224]
1.9.1.2.2.2.4 - 8.1.32.2.2.4 Method 4: Synthesis of trans-2,3-Disubstituted 1-(tert-Butylsulfonyl)aziridines [Seite 225]
1.9.1.2.2.2.5 - 8.1.32.2.2.5 Method 5: Synthesis of C-Substituted 1-(2,4,6-Triisopropylphenylsulfonyl)aziridines [Seite 226]
1.9.1.2.2.2.6 - 8.1.32.2.2.6 Method 6: Reductive Alkylation (or Alkylative Ring Opening) of 1-Sulfonylaziridinyllithiums [Seite 228]
1.9.1.2.2.2.6.1 - 8.1.32.2.2.6.1 Variation 1: Synthesis of Allylic Sulfonamides [Seite 228]
1.9.1.2.2.2.6.2 - 8.1.32.2.2.6.2 Variation 2: Synthesis of Alkynylamines [Seite 230]
1.9.1.2.2.2.6.3 - 8.1.32.2.2.6.3 Variation 3: Allylic Amino Alcohols and Amino Ethers by Organolithium-Induced Alkylative Ring Opening of 1-Sulfonyl-Protected Aziridinyl Ethers [Seite 232]
1.9.1.2.2.2.6.4 - 8.1.32.2.2.6.4 Variation 4: Allylic Amino Alcohols and Amino Ethers by Organolithium-Induced Alkylative Ring Opening of 1,4-Dimethoxybut-2-ene-Derived Aziridines [Seite 233]
1.9.1.2.2.2.7 - 8.1.32.2.2.7 Method 7: Eliminative Dimerization of Lithiated 1-(tert-Butylsulfonyl)-aziridines [Seite 234]
1.9.1.2.2.2.7.1 - 8.1.32.2.2.7.1 Variation 1: Synthesis of 2-Ene-1,4-diamines [Seite 234]
1.9.1.2.2.2.8 - 8.1.32.2.2.8 Method 8: Intramolecular Cyclopropanation of Lithiated 1-(tert-Butylsulfonyl)aziridines [Seite 235]
1.9.1.2.2.2.8.1 - 8.1.32.2.2.8.1 Variation 1: Synthesis of 2-Aminobicyclo[3.1.0]hexanes [Seite 235]
1.9.1.2.2.2.9 - 8.1.32.2.2.9 Method 9: Lithiation of 1-(tert-Butoxycarbonyl)aziridines [Seite 237]
1.9.1.2.2.2.9.1 - 8.1.32.2.2.9.1 Variation 1: Synthesis of 2-Silylaziridines [Seite 237]
1.9.1.2.2.2.9.2 - 8.1.32.2.2.9.2 Variation 2: Synthesis of trans-Configured Aziridine-2-carboxylates [Seite 237]
1.9.1.2.2.2.9.3 - 8.1.32.2.2.9.3 Variation 3: Synthesis of trans-Configured Aziridin-2-ylphosphonates [Seite 239]
1.9.1.2.2.2.9.4 - 8.1.32.2.2.9.4 Variation 4: Synthesis of N-tert-Butoxycarbonyl 1,2-Amino Alcohols [Seite 239]
1.9.1.2.2.3 - 8.1.32.2.3 Lithiation of Aziridines with an Electron-Donating Group on Nitrogen [Seite 241]
1.9.1.2.2.3.1 - 8.1.32.2.3.1 Method 1: Synthesis of cis- and trans-Configured C-Substituted 1-Alkyl-2,3-diphenylaziridines [Seite 241]
1.9.1.2.2.3.2 - 8.1.32.2.3.2 Method 2: Synthesis of C-Substituted 1-Alkyl-2-methyleneaziridines [Seite 242]
1.9.1.2.2.3.2.1 - 8.1.32.2.3.2.1 Variation 1: Synthesis of Chiral Nonracemic C-Substituted 1-Alkyl-2-methyleneaziridines [Seite 243]
1.9.1.2.2.3.3 - 8.1.32.2.3.3 Method 3: Synthesis of C-Substituted Aziridine-Borane Complexes [Seite 244]
1.9.1.2.2.3.3.1 - 8.1.32.2.3.3.1 Variation 1: Of 1-[2-(tert-Butyldimethylsiloxy)ethyl]aziridine-Borane Complexes [Seite 244]
1.9.1.2.2.3.3.2 - 8.1.32.2.3.3.2 Variation 2: Of 1-Alkyl-2-phenylaziridine-Borane Complexes [Seite 246]
1.9.1.3 - 8.1.33 Transition-Metal-Catalyzed Carbon--Carbon Bond Formation with Organolithiums [Seite 252]
1.9.1.3.1 - 8.1.33.1 Copper-Catalyzed Reactions [Seite 252]
1.9.1.3.1.1 - 8.1.33.1.1 Method 1: Copper-Catalyzed Conjugate Addition [Seite 253]
1.9.1.3.1.2 - 8.1.33.1.2 Method 2: Copper-Catalyzed Alkylation [Seite 254]
1.9.1.3.1.2.1 - 8.1.33.1.2.1 Variation 1: Copper-Catalyzed Asymmetric Allylation [Seite 254]
1.9.1.3.1.3 - 8.1.33.1.3 Method 3: Copper-Catalyzed Coupling of Organolithium Reagents with a-Lithiated Cyclic Enol Ethers [Seite 256]
1.9.1.3.2 - 8.1.33.2 Palladium-Catalyzed Reactions [Seite 256]
1.9.1.3.2.1 - 8.1.33.2.1 Method 1: Palladium-Catalyzed Cross-Coupling Reactions with Aryl and Vinyl Halides [Seite 257]
1.9.1.3.2.2 - 8.1.33.2.2 Method 2: Palladium-Catalyzed Coupling Reaction of Aryllithium Reagents with 1-Bromo-2-methylbut-3-en-2-ol [Seite 258]
1.9.1.3.3 - 8.1.33.3 Iron-Catalyzed Reactions [Seite 259]
1.9.1.3.3.1 - 8.1.33.3.1 Method 1: Iron-Catalyzed Cross-Coupling Reactions [Seite 259]
1.9.1.3.3.2 - 8.1.33.3.2 Method 2: Iron-Catalyzed Carbolithiation of Alkynes [Seite 260]
1.10 - Volume 16: Six-Membered Hetarenes with Two Identical Heteroatoms [Seite 264]
1.10.1 - 16.2 Product Class 2: 1,4-Dioxins and Benzo- and Dibenzo-Fused Derivatives [Seite 264]
1.10.1.1 - 16.2.4 1,4-Dioxins and Benzo- and Dibenzo-Fused Derivatives [Seite 264]
1.10.1.1.1 - 16.2.4.1 Synthesis by Ring-Closure Reactions [Seite 264]
1.10.1.1.1.1 - 16.2.4.1.1 By Formation of Two O--C Bonds [Seite 264]
1.10.1.1.1.1.1 - 16.2.4.1.1.1 Fragments O--C--C--O and C--C [Seite 264]
1.10.1.1.1.1.1.1 - 16.2.4.1.1.1.1 Method 1: Dibenzo[b,e][1,4]dioxins by Base-Induced Coupling of Benzene-1,2-diols with Activated Fluorobenzenes [Seite 264]
1.10.1.1.1.1.2 - 16.2.4.1.1.2 Fragments O--C--C and O--C--C [Seite 266]
1.10.1.1.1.1.2.1 - 16.2.4.1.1.2.1 Method 1: Substituted 1,4-Dioxins by Reaction of Methyl 3-Chloro-2-oxo-3-phenylpropanoate with Potassium Phthalimide or Sodium Imidazolide [Seite 266]
1.10.1.1.1.2 - 16.2.4.1.2 By Formation of One C--C Bond [Seite 267]
1.10.1.1.1.2.1 - 16.2.4.1.2.1 Fragment C--O--C--C--O--C [Seite 267]
1.10.1.1.1.2.1.1 - 16.2.4.1.2.1.1 Method 1: 1,4-Benzodioxins by Ring-Closing Metathesis of Divinyl Ethers [Seite 267]
1.10.1.1.2 - 16.2.4.2 Aromatization [Seite 268]
1.10.1.1.2.1 - 16.2.4.2.1 Method 1: 1,4-Benzodioxins by Isomerization of Exocyclic Alkenes [Seite 268]
1.10.1.1.2.2 - 16.2.4.2.2 Method 2: Dibenzo[b,e][1,4]dioxins from the Diels-Alder Reactions of 1,4-Benzodioxin and Benzo[b]furo[3,4-e][1,4]dioxins [Seite 269]
1.10.1.1.3 - 16.2.4.3 Synthesis by Substituent Modification [Seite 272]
1.10.1.1.3.1 - 16.2.4.3.1 Substitution of Existing Substituents [Seite 272]
1.10.1.1.3.1.1 - 16.2.4.3.1.1 Of Hydrogen [Seite 272]
1.10.1.1.3.1.1.1 - 16.2.4.3.1.1.1 Method 1: Vilsmeier Reaction of 2-Phenyl-1,4-benzodioxin [Seite 272]
1.10.1.1.3.1.1.2 - 16.2.4.3.1.1.2 Method 2: Diels-Alder Reaction of 2,2'-Bi-1,4-benzodioxin [Seite 272]
1.10.1.1.3.1.2 - 16.2.4.3.1.2 Of Metals [Seite 273]
1.10.1.1.3.1.2.1 - 16.2.4.3.1.2.1 Method 1: Stille Coupling of 2-(Trimethylstannyl)-1,4-benzodioxin with a Bromoalkene [Seite 273]
1.10.1.1.3.1.3 - 16.2.4.3.1.3 Of Halogens [Seite 275]
1.10.1.1.3.1.3.1 - 16.2.4.3.1.3.1 Method 1: Alkylation of 2-Bromo-1,4-benzodioxin by Lithium-Halogen Exchange [Seite 275]
1.10.1.1.3.2 - 16.2.4.3.2 Modification of Substituents [Seite 275]
1.10.1.1.3.2.1 - 16.2.4.3.2.1 Method 1: Alkylation of 1,4-Benzodioxin-6,7-dicarbaldehyde [Seite 275]
1.10.2 - 16.3 Product Class 3: 1,2-Dithiins [Seite 278]
1.10.2.1 - 16.3.5 1,2-Dithiins [Seite 278]
1.10.2.1.1 - 16.3.5.1 Synthesis by Ring-Closure Reactions [Seite 281]
1.10.2.1.1.1 - 16.3.5.1.1 By Formation of One S--S and Two S--C Bonds [Seite 281]
1.10.2.1.1.1.1 - 16.3.5.1.1.1 Fragment C--C--C--C and Two S Fragments [Seite 281]
1.10.2.1.1.1.1.1 - 16.3.5.1.1.1.1 Method 1: Addition of Sulfur to 6-Nitroperylo[1,12-bcd]thiophene [Seite 281]
1.10.2.1.1.1.1.2 - 16.3.5.1.1.1.2 Method 2: Addition of Sulfur to 2-(Trimethylsiloxy)buta-1,3-diene [Seite 281]
1.10.2.1.1.2 - 16.3.5.1.2 By Formation of One S--S and One S--C Bond [Seite 282]
1.10.2.1.1.2.1 - 16.3.5.1.2.1 Fragments S--C--C--C--C and S [Seite 282]
1.10.2.1.1.2.1.1 - 16.3.5.1.2.1.1 Method 1: Reaction of 2-(2-Phenylvinyl)-3-vinylthiirane Promoted by Acetonitrile(pentacarbonyl)tungsten(0) [Seite 282]
1.10.2.1.1.3 - 16.3.5.1.3 By Formation of One S--S and One C--C Bond [Seite 282]
1.10.2.1.1.3.1 - 16.3.5.1.3.1 Fragments S--C--C--C and S--C [Seite 282]
1.10.2.1.1.3.1.1 - 16.3.5.1.3.1.1 Method 1: Thermal Dimerization of a,ß-Unsaturated ß-Arylsulfanyl Thioketones [Seite 282]
1.10.2.1.1.3.1.2 - 16.3.5.1.3.1.2 Method 2: Cobalt(II)-Mediated Dimerization of a,ß-Unsaturated Thioacylsilanes [Seite 283]
1.10.2.1.1.3.1.3 - 16.3.5.1.3.1.3 Method 3: Dimerization via Diels-Alder Reaction of Thioaldehydes [Seite 283]
1.10.2.1.1.3.2 - 16.3.5.1.3.2 Fragments S--C--C and S--C--C [Seite 284]
1.10.2.1.1.3.2.1 - 16.3.5.1.3.2.1 Method 1: Thionation-Dimerization of 1,3-Dihydro-2H-indol-2-one [Seite 284]
1.10.2.1.1.3.2.2 - 16.3.5.1.3.2.2 Method 2: Manganese(IV) Oxide Promoted Oxidative Dimerization [Seite 285]
1.10.2.1.1.4 - 16.3.5.1.4 By Formation of One S--S Bond [Seite 285]
1.10.2.1.1.4.1 - 16.3.5.1.4.1 Fragment S--C--C--C--C--S [Seite 285]
1.10.2.1.1.4.1.1 - 16.3.5.1.4.1.1 Method 1: Polycyclization of Diynes [Seite 285]
1.10.2.1.1.4.1.2 - 16.3.5.1.4.1.2 Method 2: N-Bromosuccinimide-Induced Ring Formation [Seite 286]
1.10.2.1.1.4.1.3 - 16.3.5.1.4.1.3 Method 3: Cyclization of Dibromides Promoted by Phase-Transfer Catalysts [Seite 287]
1.10.2.1.1.4.1.4 - 16.3.5.1.4.1.4 Method 4: Cyclization of Dichlorides by Tandem Michael-Nucleophilic Substitution Processes [Seite 288]
1.10.2.1.1.5 - 16.3.5.1.5 By Formation of One C--C Bond [Seite 289]
1.10.2.1.1.5.1 - 16.3.5.1.5.1 Fragment C--C--S--S--C--C [Seite 289]
1.10.2.1.1.5.1.1 - 16.3.5.1.5.1.1 Method 1: Cyclization via Ring-Closing Metathesis of Alkenes [Seite 289]
1.10.2.1.2 - 16.3.5.2 Synthesis by Ring Transformation [Seite 289]
1.10.2.1.2.1 - 16.3.5.2.1 Method 1: Ring Contraction Promoted by Photolysis [Seite 289]
1.10.2.1.3 - 16.3.5.3 Synthesis by Other Methods [Seite 290]
1.10.2.1.3.1 - 16.3.5.3.1 Method 1: Rearrangement Promoted by Photolysis [Seite 290]
1.10.2.1.4 - 16.3.5.4 Applications of 1,2-Dithiins in Organic Synthesis [Seite 290]
1.10.2.1.4.1 - 16.3.5.4.1 Reaction with Transition Metals [Seite 291]
1.10.2.1.4.1.1 - 16.3.5.4.1.1 Method 1: Reaction with Organometallic Complexes [Seite 291]
1.10.2.1.4.1.2 - 16.3.5.4.1.2 Method 2: Reaction with Copper Metal [Seite 292]
1.10.2.1.4.2 - 16.3.5.4.2 Reaction with Lewis Acids [Seite 292]
1.10.2.1.4.2.1 - 16.3.5.4.2.1 Method 1: Reaction Promoted by Aluminum Trichloride [Seite 292]
1.10.2.1.4.2.2 - 16.3.5.4.2.2 Method 2: Reaction Promoted by Boron Trifluoride [Seite 293]
1.10.2.1.4.3 - 16.3.5.4.3 Reaction with Diazo Compounds [Seite 294]
1.10.2.1.4.3.1 - 16.3.5.4.3.1 Method 1: Reaction Promoted by Rhodium(II) Acetate [Seite 294]
1.10.2.1.4.3.2 - 16.3.5.4.3.2 Method 2: Reaction Promoted by Copper(I) Chloride [Seite 295]
1.10.2.1.4.4 - 16.3.5.4.4 Reaction with Alkynes [Seite 296]
1.10.2.1.4.4.1 - 16.3.5.4.4.1 Method 1: Reaction Promoted by Bis(acetylacetonato)nickel(II) [Seite 296]
1.10.2.1.4.5 - 16.3.5.4.5 Reaction with Enzymes [Seite 297]
1.10.2.1.4.5.1 - 16.3.5.4.5.1 Method 1: Reaction with a Toluene Dioxygenase [Seite 297]
1.11 - Volume 17: Six-Membered Hetarenes with Two Unlike or More than Two Heteroatoms and Fully Unsaturated Larger-Ring Heterocycles [Seite 300]
1.11.1 - 17.4 Product Class 4: Seven-Membered Hetarenes with One Heteroatom [Seite 300]
1.11.1.1 - 17.4.1.5 Oxepins [Seite 300]
1.11.1.1.1 - 17.4.1.5.1 Synthesis by Ring-Closure Reactions [Seite 300]
1.11.1.1.1.1 - 17.4.1.5.1.1 By Formation of One O--C and One C--C Bond [Seite 300]
1.11.1.1.1.1.1 - 17.4.1.5.1.1.1 Method 1: From a 3-(Dimethylamino)-1-phenylprop-2-en-1-one and Arylidenemalononitriles [Seite 300]
1.11.1.1.2 - 17.4.1.5.2 Synthesis by Ring Transformation [Seite 300]
1.11.1.1.2.1 - 17.4.1.5.2.1 Method 1: By Valence Isomerization of 3-Oxaquadricyclanes [Seite 300]
1.11.1.1.2.2 - 17.4.1.5.2.2 Method 2: By Valence Isomerization of 7-Oxanorbornadienes [Seite 301]
1.11.1.1.2.3 - 17.4.1.5.2.3 Method 3: By Ring Enlargement of Furans with Diethyl Acetylenedicarboxylate [Seite 302]
1.11.1.1.2.4 - 17.4.1.5.2.4 Method 4: By Valence Isomerization of Benzene Oxide [Seite 302]
1.11.1.1.2.5 - 17.4.1.5.2.5 Method 5: By Ring Enlargement of a 2-[(Prop-2-ynyloxy)methyl]furan [Seite 303]
1.11.1.1.2.6 - 17.4.1.5.2.6 Method 6: By Ring Enlargement of a Cyclohexa-2,5-diene-1,4-diol via SN2' Reaction [Seite 304]
1.11.1.1.3 - 17.4.1.5.3 Aromatization [Seite 304]
1.11.1.1.3.1 - 17.4.1.5.3.1 Method 1: By Dehydrogenation [Seite 304]
1.11.1.2 - 17.4.2.5 Benzoxepins [Seite 308]
1.11.1.2.1 - 17.4.2.5.1 Synthesis by Ring-Closure Reactions [Seite 308]
1.11.1.2.1.1 - 17.4.2.5.1.1 By Formation of One O--C and Two C--C Bonds [Seite 308]
1.11.1.2.1.1.1 - 17.4.2.5.1.1.1 Method 1: From a Betaine and Diethyl Acetylenedicarboxylate [Seite 308]
1.11.1.2.1.2 - 17.4.2.5.1.2 By Formation of One O--C and One C--C Bond [Seite 308]
1.11.1.2.1.2.1 - 17.4.2.5.1.2.1 Method 1: From Dinitrotoluenes and Salicylaldehydes [Seite 308]
1.11.1.2.1.3 - 17.4.2.5.1.3 By Formation of Two C--C Bonds [Seite 310]
1.11.1.2.1.3.1 - 17.4.2.5.1.3.1 Method 1: By Annulation of a Boronic Acid with Dimethyl Acetylenedicarboxylate [Seite 310]
1.11.1.2.1.4 - 17.4.2.5.1.4 By Formation of One O--C Bond [Seite 311]
1.11.1.2.1.4.1 - 17.4.2.5.1.4.1 Method 1: From 2-Alkyl-3-[2-(iodoethynyl)phenyl]oxiranes [Seite 311]
1.11.1.2.1.4.2 - 17.4.2.5.1.4.2 Method 2: By Cyclization of 2-[2-(2-Bromophenyl)vinyl]phenols and Related Compounds [Seite 312]
1.11.1.2.1.5 - 17.4.2.5.1.5 By Formation of One C--C Bond [Seite 314]
1.11.1.2.1.5.1 - 17.4.2.5.1.5.1 Method 1: By Base-Catalyzed Cyclocondensation of Methyl (2E)-4-(2-Formylphenoxy)but-2-enoate [Seite 314]
1.11.1.2.2 - 17.4.2.5.2 Synthesis by Ring Transformation [Seite 315]
1.11.1.2.2.1 - 17.4.2.5.2.1 By Ring Enlargement [Seite 315]
1.11.1.2.2.1.1 - 17.4.2.5.2.1.1 Method 1: Of a Benzofuran with 1-Phenyl-2-tosylacetylene [Seite 315]
1.11.1.2.2.1.2 - 17.4.2.5.2.1.2 Method 2: Of Xanthenes by Dehydration [Seite 315]
1.11.1.2.2.1.3 - 17.4.2.5.2.1.3 Method 3: Of 2-Diazo-3',6'-bis(diethylamino)spiro[indene-1,9'-xanthen]-3(2H)-one (Rhodamine BBN) [Seite 317]
1.11.1.2.2.1.4 - 17.4.2.5.2.1.4 Method 4: Of a Dihydrofuran by Rearrangement [Seite 318]
1.11.1.2.2.1.5 - 17.4.2.5.2.1.5 Method 5: Of Tetrahydrobenzo[b]cyclopropa[e]pyran-1-carboxylates [Seite 319]
1.11.1.2.3 - 17.4.2.5.3 Synthesis by Substituent Modification [Seite 320]
1.11.1.2.3.1 - 17.4.2.5.3.1 Substitution of Existing Substituents [Seite 320]
1.11.1.2.3.1.1 - 17.4.2.5.3.1.1 Method 1: Condensation of Dibenz[b,f]oxepin-10(11H)-one with 3-Methylbut-2-enal [Seite 320]
1.11.1.2.3.1.2 - 17.4.2.5.3.1.2 Method 2: Vilsmeier-Type Chloroformylation of Dibenz[b,f]oxepin-10(11H)-ones [Seite 320]
1.11.1.2.3.1.3 - 17.4.2.5.3.1.3 Method 3: Reaction of Dibenz[b,f]oxepin-10(11H)-one with Base and Carbon Disulfide/Iodomethane or Dimethyl Trithiocarbonate [Seite 321]
1.11.1.2.3.1.4 - 17.4.2.5.3.1.4 Method 4: 1H-Dibenz[2,3:6,7]oxepino[4,5-b]pyrroles by Annulation of 11-(Hydrazonoethylidene)dibenz[b,f]oxepin-10-ones [Seite 327]
1.11.1.2.3.1.5 - 17.4.2.5.3.1.5 Method 5: 1H-Dibenz[2,3:6,7]oxepino[4,5-d]imidazoles by Oxidation/Annulation of Dibenz[b,f]oxepin-10(11H)-ones [Seite 328]
1.11.1.3 - 17.4.5.5 Azepines, Cyclopentazepines, and Phosphorus Analogues [Seite 332]
1.11.1.3.1 - 17.4.5.5.1 Synthesis by Ring-Closure Reactions [Seite 332]
1.11.1.3.1.1 - 17.4.5.5.1.1 By Formation of One C--C Bond [Seite 332]
1.11.1.3.1.1.1 - 17.4.5.5.1.1.1 Method 1: Azepine Formation via Copper-Mediated Cyclization of 2-Azahepta-2,4-dien-6-ynyl Anions [Seite 332]
1.11.1.3.1.1.2 - 17.4.5.5.1.1.2 Method 2: 3H-Azepines via Deprotonation of 2-Aza-1,3,5-trienes [Seite 333]
1.11.1.3.2 - 17.4.5.5.2 Synthesis by Ring Transformation [Seite 334]
1.11.1.3.2.1 - 17.4.5.5.2.1 By Ring Enlargement [Seite 334]
1.11.1.3.2.1.1 - 17.4.5.5.2.1.1 Of Five-Membered Heterocycles [Seite 334]
1.11.1.3.2.1.1.1 - 17.4.5.5.2.1.1.1 Method 1: Thermal Isomerization of 3-Azaquadricyclanes [Seite 334]
1.11.1.3.2.1.1.1.1 - 17.4.5.5.2.1.1.1.1 Variation 1: Thermal Isomerization of a Cyclobutane 3-Azaquadricyclane [Seite 334]
1.11.1.3.2.1.2 - 17.4.5.5.2.1.2 Of Six-Membered Arenes [Seite 335]
1.11.1.3.2.1.2.1 - 17.4.5.5.2.1.2.1 Method 1: Intramolecular Insertion of Arylnitrenes [Seite 335]
1.11.1.3.2.1.2.1.1 - 17.4.5.5.2.1.2.1.1 Variation 1: Photolytic Decomposition of Aryl Azides [Seite 335]
1.11.1.3.2.1.2.1.2 - 17.4.5.5.2.1.2.1.2 Variation 2: Rearrangement of Nitroarenes [Seite 337]
1.11.1.3.3 - 17.4.5.5.3 Synthesis by Substituent Modification [Seite 338]
1.11.1.3.3.1 - 17.4.5.5.3.1 Substitution of Existing Substituents [Seite 338]
1.11.1.3.3.1.1 - 17.4.5.5.3.1.1 Of Hydrogen [Seite 338]
1.11.1.3.3.1.1.1 - 17.4.5.5.3.1.1.1 Method 1: Tautomerization [Seite 338]
1.11.1.3.3.1.1.1.1 - 17.4.5.5.3.1.1.1.1 Variation 1: Rearrangement of 2H- to 3H-Azepines [Seite 338]
1.11.1.3.3.1.1.2 - 17.4.5.5.3.1.1.2 Method 2: C-Halogenation [Seite 339]
1.11.1.3.3.1.1.2.1 - 17.4.5.5.3.1.1.2.1 Variation 1: C-Halogenation with N-Bromosuccinimide [Seite 339]
1.11.1.3.3.1.1.3 - 17.4.5.5.3.1.1.3 Method 3: C-Alkylsulfanylation [Seite 339]
1.11.1.3.3.1.1.4 - 17.4.5.5.3.1.1.4 Method 4: C-Amination [Seite 340]
1.11.1.3.3.1.1.5 - 17.4.5.5.3.1.1.5 Method 5: C-Alkoxylation [Seite 341]
1.11.1.3.3.1.2 - 17.4.5.5.3.1.2 Of Heteroatoms [Seite 342]
1.11.1.3.3.1.2.1 - 17.4.5.5.3.1.2.1 Method 1: Of Alkoxy Groups [Seite 342]
1.11.1.3.3.1.2.1.1 - 17.4.5.5.3.1.2.1.1 Variation 1: Of Activated Organooxy Groups [Seite 344]
1.11.1.4 - 17.4.6.10 Benzazepines and Their Group 15 Analogues [Seite 348]
1.11.1.4.1 - 17.4.6.10.1 1H-1-Benzazepines [Seite 349]
1.11.1.4.1.1 - 17.4.6.10.1.1 Synthesis by Ring-Closure Reactions [Seite 349]
1.11.1.4.1.1.1 - 17.4.6.10.1.1.1 By Formation of Two C--C Bonds and One C--N Bond [Seite 349]
1.11.1.4.1.1.1.1 - 17.4.6.10.1.1.1.1 Method 1: By Condensation between 2-Fluoroaniline and Aryl Methyl Ketones [Seite 349]
1.11.1.4.1.1.2 - 17.4.6.10.1.1.2 By Formation of One N--C and One C--C Bond [Seite 349]
1.11.1.4.1.1.2.1 - 17.4.6.10.1.1.2.1 Method 1: From 5-[(E)-(2-Dimethylamino)vinyl]-2,1,3-benzoselenadiazol-4-amine [Seite 349]
1.11.1.4.1.1.3 - 17.4.6.10.1.1.3 By Formation of Two C--C Bonds [Seite 350]
1.11.1.4.1.1.3.1 - 17.4.6.10.1.1.3.1 Method 1: By Thermal Cycloaddition of Dimethyl Acetylenedicarboxylate with Methylindoles [Seite 350]
1.11.1.4.1.1.3.2 - 17.4.6.10.1.1.3.2 Method 2: From the Reaction of Phosphonium Ylides [Seite 351]
1.11.1.4.1.1.4 - 17.4.6.10.1.1.4 By Formation of One C--N Bond [Seite 353]
1.11.1.4.1.1.4.1 - 17.4.6.10.1.1.4.1 Method 1: By Intramolecular Addition of Anilines [Seite 353]
1.11.1.4.1.2 - 17.4.6.10.1.2 Synthesis by Ring Transformation [Seite 355]
1.11.1.4.1.2.1 - 17.4.6.10.1.2.1 By Ring Enlargement [Seite 355]
1.11.1.4.1.2.1.1 - 17.4.6.10.1.2.1.1 Method 1: By Ring Expansion of Activated Quinolines [Seite 355]
1.11.1.4.2 - 17.4.6.10.2 2-Benzazepines [Seite 356]
1.11.1.4.2.1 - 17.4.6.10.2.1 Synthesis by Ring-Closure Reactions [Seite 356]
1.11.1.4.2.1.1 - 17.4.6.10.2.1.1 By Formation of One N--C and One C--C Bond [Seite 356]
1.11.1.4.2.1.1.1 - 17.4.6.10.2.1.1.1 Method 1: By a Tandem Ritter/Houben-Hoesch Process [Seite 356]
1.11.1.4.2.1.1.2 - 17.4.6.10.2.1.1.2 Method 2: By Reaction of 4-Chloro-2-oxo-2H-1-benzopyran-3-carbaldehyde with Benzylamines [Seite 357]
1.11.1.4.2.1.2 - 17.4.6.10.2.1.2 By Formation of One C--C Bond [Seite 359]
1.11.1.4.2.1.2.1 - 17.4.6.10.2.1.2.1 Method 1: By Cyclization of 2-Azahepta-2,4-dien-6-ynyls [Seite 359]
1.11.1.4.3 - 17.4.6.10.3 5H-Dibenz[b,d]azepines [Seite 360]
1.11.1.4.3.1 - 17.4.6.10.3.1 Synthesis by Substituent Modification [Seite 360]
1.11.1.4.3.1.1 - 17.4.6.10.3.1.1 Method 1: By Rhodium-Catalyzed Decarbonylative Cycloaddition [Seite 360]
1.11.1.4.4 - 17.4.6.10.4 11H-Dibenz[b,e]azepines [Seite 361]
1.11.1.4.4.1 - 17.4.6.10.4.1 Synthesis by Ring-Closure Reactions [Seite 361]
1.11.1.4.4.1.1 - 17.4.6.10.4.1.1 By Formation of One N--C and One C--C Bond [Seite 361]
1.11.1.4.4.1.1.1 - 17.4.6.10.4.1.1.1 Method 1: By Condensation of 2,6-Dimethylaniline with Phenanthrene-9,10-dione [Seite 361]
1.11.1.4.4.1.2 - 17.4.6.10.4.1.2 By Formation of One C--C Bond [Seite 361]
1.11.1.4.4.1.2.1 - 17.4.6.10.4.1.2.1 Method 1: By Bischler-Napieralski Cyclodehydration of N-(2-Benzylphenyl)-2-chloroacetamide [Seite 361]
1.11.1.4.4.1.2.2 - 17.4.6.10.4.1.2.2 Method 2: By Friedel-Crafts Cyclization of 2-Allyl-N-benzylanilines [Seite 362]
1.11.1.4.4.1.2.3 - 17.4.6.10.4.1.2.3 Method 3: By Acid-Mediated Cyclization of Benzylic Alcohols [Seite 363]
1.11.1.4.5 - 17.4.6.10.5 5H-Dibenz[c,e]azepines [Seite 365]
1.11.1.4.5.1 - 17.4.6.10.5.1 Synthesis by Ring-Closure Reactions [Seite 365]
1.11.1.4.5.1.1 - 17.4.6.10.5.1.1 By Formation of Two N--C Bonds [Seite 365]
1.11.1.4.5.1.1.1 - 17.4.6.10.5.1.1.1 Method 1: Ring Closure of 2,2'-Difunctionalized Biaryls with Chiral Amines under Acidic Conditions [Seite 365]
1.11.1.4.6 - 17.4.6.10.6 5H-Dibenz[b,f]azepines [Seite 370]
1.11.1.4.6.1 - 17.4.6.10.6.1 Synthesis by Ring-Closure Reactions [Seite 370]
1.11.1.4.6.1.1 - 17.4.6.10.6.1.1 By Formation of One C--C and One C--N Bond [Seite 370]
1.11.1.4.6.1.1.1 - 17.4.6.10.6.1.1.1 Method 1: By a Palladium-Catalyzed Tandem Process [Seite 370]
1.11.1.4.6.1.2 - 17.4.6.10.6.1.2 By Formation of One C--C Bond [Seite 371]
1.11.1.4.6.1.2.1 - 17.4.6.10.6.1.2.1 Method 1: By Palladium-Catalyzed Intramolecular Amination [Seite 371]
1.11.1.4.6.1.2.2 - 17.4.6.10.6.1.2.2 Method 2: Friedel-Crafts Acylation [Seite 372]
1.11.1.4.6.2 - 17.4.6.10.6.2 Synthesis by Ring Transformation [Seite 373]
1.11.1.4.6.2.1 - 17.4.6.10.6.2.1 By Ring Enlargement [Seite 373]
1.11.1.4.6.2.1.1 - 17.4.6.10.6.2.1.1 Method 1: From 1-Arylindoles [Seite 373]
1.11.1.4.6.2.1.1.1 - 17.4.6.10.6.2.1.1.1 Variation 1: Ring Expansion of 6-Methoxy-1-phenylindole [Seite 373]
1.11.1.4.6.3 - 17.4.6.10.6.3 Aromatization [Seite 373]
1.11.1.4.6.3.1 - 17.4.6.10.6.3.1 Method 1: Bromination-Dehydrobromination [Seite 373]
1.11.1.4.6.3.1.1 - 17.4.6.10.6.3.1.1 Variation 1: Dehalogenation of 5-Acetyl-10,11-dibromo-10,11-dihydro-5H-dibenz[b,f]azepine with 1,2-Diphenylethane-1,2-diyldisodium [Seite 373]
1.11.1.4.6.4 - 17.4.6.10.6.4 Synthesis by Substituent Modification [Seite 374]
1.11.1.4.6.4.1 - 17.4.6.10.6.4.1 Substitution of Hydrogen [Seite 374]
1.11.1.4.6.4.1.1 - 17.4.6.10.6.4.1.1 Method 1: N-Alkylation of 5H-Dibenz[b,f]azepines [Seite 374]
1.11.1.4.6.4.1.1.1 - 17.4.6.10.6.4.1.1.1 Variation 1: By Phase-Transfer Catalysis [Seite 375]
1.11.1.4.6.4.1.2 - 17.4.6.10.6.4.1.2 Method 2: N-Acylation of 5H-Dibenz[b,f]azepines [Seite 376]
1.11.1.4.6.4.1.2.1 - 17.4.6.10.6.4.1.2.1 Variation 1: By Reaction with Acid Chlorides [Seite 376]
1.11.1.4.6.4.1.2.2 - 17.4.6.10.6.4.1.2.2 Variation 2: By Reaction with Dimethyl Carbonate [Seite 377]
1.11.1.4.6.4.1.2.3 - 17.4.6.10.6.4.1.2.3 Variation 3: By Palladium-Mediated Carbonylative Benzoylation of 5H-Dibenz[b,f]azepine [Seite 377]
1.11.1.4.6.4.1.2.4 - 17.4.6.10.6.4.1.2.4 Variation 4: By Reaction with Trifluoroacetic Anhydride [Seite 378]
1.11.1.4.6.4.1.2.5 - 17.4.6.10.6.4.1.2.5 Variation 5: N-Formylation of 5H-Dibenz[b,f]azepine [Seite 378]
1.11.1.4.6.4.1.3 - 17.4.6.10.6.4.1.3 Method 3: Chlorocarbonylation of 5H-Dibenz[b,f]azepines with Phosgene Equivalents [Seite 379]
1.11.1.4.6.4.1.3.1 - 17.4.6.10.6.4.1.3.1 Variation 1: N-Acylation of 5H-Dibenz[b,f]azepines Followed by Amination [Seite 379]
1.11.1.4.6.4.1.4 - 17.4.6.10.6.4.1.4 Method 4: Formation of N--P Bonds [Seite 379]
1.11.1.4.6.4.1.5 - 17.4.6.10.6.4.1.5 Method 5: By a Methoxy Group [Seite 381]
1.11.1.4.6.4.1.6 - 17.4.6.10.6.4.1.6 Method 6: Palladium-Catalyzed N-Arylation [Seite 382]
1.11.1.4.6.4.2 - 17.4.6.10.6.4.2 Substitution of Heteroatoms [Seite 383]
1.11.1.4.6.4.2.1 - 17.4.6.10.6.4.2.1 Method 1: Substitution of Bromine [Seite 383]
1.11.1.4.6.4.3 - 17.4.6.10.6.4.3 Addition Reactions [Seite 384]
1.11.1.4.6.4.3.1 - 17.4.6.10.6.4.3.1 Method 1: Formation of Epoxides by Oxidation [Seite 384]
1.11.1.4.6.4.3.2 - 17.4.6.10.6.4.3.2 Method 2: Formation of Diols by Oxidation [Seite 384]
1.11.1.4.6.4.3.3 - 17.4.6.10.6.4.3.3 Method 3: [2 + 2] Photodimerization of 5-Acetyl-5H-dibenz[b,f]azepine [Seite 385]
1.11.1.4.6.4.3.3.1 - 17.4.6.10.6.4.3.3.1 Variation 1: [2 + 2] Photodimerization of 5H-Dibenz[b,f]azepine Derivatives [Seite 385]
1.11.1.4.7 - 17.4.6.10.7 9H-Tribenz[b,d,f]azepines [Seite 386]
1.11.1.4.7.1 - 17.4.6.10.7.1 Synthesis by Ring-Closure Reactions [Seite 386]
1.11.1.4.7.1.1 - 17.4.6.10.7.1.1 By Formation of One N--C Bond [Seite 386]
1.11.1.4.7.1.1.1 - 17.4.6.10.7.1.1.1 Method 1: From N-(2-Bromophenyl)biphenyl-2-amine [Seite 386]
1.11.1.4.8 - 17.4.6.10.8 Other Group 15 Benzoheterepins [Seite 387]
1.11.1.4.8.1 - 17.4.6.10.8.1 3-Benzoheterepins [Seite 387]
1.11.1.4.8.1.1 - 17.4.6.10.8.1.1 Synthesis by Ring-Closure Reactions [Seite 387]
1.11.1.4.8.1.1.1 - 17.4.6.10.8.1.1.1 By Formation of Two Heteroatom--Carbon Bonds [Seite 387]
1.11.1.4.8.1.1.1.1 - 17.4.6.10.8.1.1.1.1 Method 1: Potassium Hydroxide Catalyzed Addition of Metal Complexed Phosphines to 1,2-Diethynylbenzene [Seite 387]
1.11.1.4.8.1.1.1.2 - 17.4.6.10.8.1.1.1.2 Method 2: From 1,2-Bis[(Z)-2-bromovinyl]benzenes and Metal Halides [Seite 388]
1.12 - Volume 19: Three Carbon--Heteroatom Bonds: Nitriles, Isocyanides, and Derivatives [Seite 392]
1.12.1 - 19.5 Product Class 5: Nitriles [Seite 392]
1.12.1.1 - 19.5.17 Synthesis of Nitriles Using Cross-Coupling Reactions [Seite 392]
1.12.1.1.1 - 19.5.17.1 Preparation of Aryl Cyanides [Seite 392]
1.12.1.1.1.1 - 19.5.17.1.1 Method 1: Use of Alkali Metal Cyanides [Seite 392]
1.12.1.1.1.1.1 - 19.5.17.1.1.1 Variation 1: Palladium-Catalyzed Approaches [Seite 393]
1.12.1.1.1.1.2 - 19.5.17.1.1.2 Variation 2: Copper-Catalyzed Approaches [Seite 395]
1.12.1.1.1.1.3 - 19.5.17.1.1.3 Variation 3: Dual Palladium- and Copper-Catalyzed Approaches [Seite 396]
1.12.1.1.1.1.4 - 19.5.17.1.1.4 Variation 4: Nickel-Catalyzed Approaches [Seite 397]
1.12.1.1.1.2 - 19.5.17.1.2 Method 2: Use of Zinc(II) Cyanide [Seite 398]
1.12.1.1.1.2.1 - 19.5.17.1.2.1 Variation 1: Palladium-Catalyzed Approaches: Homogeneous Catalysis [Seite 398]
1.12.1.1.1.2.2 - 19.5.17.1.2.2 Variation 2: Palladium-Catalyzed Approaches: Heterogeneous Catalysis [Seite 406]
1.12.1.1.1.2.3 - 19.5.17.1.2.3 Variation 3: Copper-Mediated Approaches [Seite 408]
1.12.1.1.1.3 - 19.5.17.1.3 Method 3: Use of Nickel(II) Cyanide as the Cyanide Source [Seite 409]
1.12.1.1.1.4 - 19.5.17.1.4 Method 4: Use of Copper(I) Cyanide as the Cyanide Source [Seite 410]
1.12.1.1.1.5 - 19.5.17.1.5 Method 5: Use of Potassium Hexacyanoferrate(II) as the Cyanide Source [Seite 411]
1.12.1.1.1.5.1 - 19.5.17.1.5.1 Variation 1: Palladium-Catalyzed Approaches: Homogeneous Catalysis [Seite 411]
1.12.1.1.1.5.2 - 19.5.17.1.5.2 Variation 2: Palladium-Catalyzed Approaches: Heterogeneous Catalysis [Seite 418]
1.12.1.1.1.5.3 - 19.5.17.1.5.3 Variation 3: Copper-Catalyzed Approaches [Seite 421]
1.12.1.1.1.5.4 - 19.5.17.1.5.4 Variation 4: Dual Palladium- and Copper-Catalyzed Approaches [Seite 424]
1.12.1.1.1.6 - 19.5.17.1.6 Method 6: Use of Organic Cyanide Sources [Seite 425]
1.12.1.1.1.6.1 - 19.5.17.1.6.1 Variation 1: Use of Cyanohydrins [Seite 425]
1.12.1.1.1.6.2 - 19.5.17.1.6.2 Variation 2: Use of Trimethylsilyl Cyanide [Seite 429]
1.12.1.1.1.6.3 - 19.5.17.1.6.3 Variation 3: Use of N-Cyano-N-phenyl-4-toluenesulfonamide [Seite 431]
1.12.1.1.1.7 - 19.5.17.1.7 Method 7: In Situ Generation of Cyanide from Non-Cyanide-Containing Precursors [Seite 431]
1.12.1.1.2 - 19.5.17.2 Preparation of Hetaryl Cyanides [Seite 433]
1.12.1.1.2.1 - 19.5.17.2.1 Method 1: Palladium-Catalyzed Coupling Reactions [Seite 437]
1.12.1.1.2.2 - 19.5.17.2.2 Method 2: Copper-Catalyzed Coupling Reactions [Seite 440]
1.12.1.1.2.3 - 19.5.17.2.3 Method 3: Dual Palladium- and Copper-Catalyzed Approaches [Seite 443]
1.12.1.1.3 - 19.5.17.3 Preparation of Vinyl Cyanides [Seite 446]
1.12.1.1.3.1 - 19.5.17.3.1 Method 1: Cyanation of Vinyl Halides and Vinylboronic Acids [Seite 446]
1.13 - Volume 27: Heteroatom Analogues of Aldehydes and Ketones [Seite 454]
1.13.1 - 27.25 Product Class 25: N-Sulfanyl-, N-Selanyl-, and N-Tellanylimines, and Their Oxidation Derivatives [Seite 454]
1.13.1.1 - 27.25.1 Product Subclass 1: N-Sulfanylimines [Seite 454]
1.13.1.1.1 - 27.25.1.1 Synthesis of Product Subclass 1 [Seite 454]
1.13.1.1.1.1 - 27.25.1.1.1 Method 1: Synthesis from Aldehydes or Ketones [Seite 454]
1.13.1.1.1.1.1 - 27.25.1.1.1.1 Variation 1: From Ammonia and a Thiol [Seite 454]
1.13.1.1.1.1.2 - 27.25.1.1.1.2 Variation 2: From Ammonia and a Disulfide [Seite 455]
1.13.1.1.1.1.3 - 27.25.1.1.1.3 Variation 3: From N,N-Bis(trimethylsilyl)sulfenamides [Seite 456]
1.13.1.1.1.1.4 - 27.25.1.1.1.4 Variation 4: From Sulfenamides [Seite 458]
1.13.1.1.1.2 - 27.25.1.1.2 Method 2: Synthesis from Imines and Imine Derivatives [Seite 461]
1.13.1.1.1.2.1 - 27.25.1.1.2.1 Variation 1: From N-Unsubstituted Imines [Seite 461]
1.13.1.1.1.2.2 - 27.25.1.1.2.2 Variation 2: From Oximes [Seite 462]
1.13.1.1.1.2.3 - 27.25.1.1.2.3 Variation 3: From Oxime Thiocarbamates [Seite 463]
1.13.1.1.1.2.4 - 27.25.1.1.2.4 Variation 4: From O-Tosyloximes [Seite 464]
1.13.1.1.1.2.5 - 27.25.1.1.2.5 Variation 5: From N-Chloroimines [Seite 465]
1.13.1.1.1.3 - 27.25.1.1.3 Method 3: Synthesis from a-Aminoalkanoates [Seite 467]
1.13.1.1.1.4 - 27.25.1.1.4 Method 4: Synthesis from Sulfinamides [Seite 468]
1.13.1.1.1.5 - 27.25.1.1.5 Method 5: Synthesis from Nitro Compounds [Seite 468]
1.13.1.2 - 27.25.2 Product Subclass 2: N-Sulfinylimines [Seite 469]
1.13.1.2.1 - 27.25.2.1 Synthesis of Product Subclass 2 [Seite 469]
1.13.1.2.1.1 - 27.25.2.1.1 Method 1: Synthesis by Oxidation of N-Sulfanylimines [Seite 469]
1.13.1.2.1.2 - 27.25.2.1.2 Method 2: Synthesis from N-Metalated Imines [Seite 473]
1.13.1.2.1.2.1 - 27.25.2.1.2.1 Variation 1: From Sulfinate Esters [Seite 473]
1.13.1.2.1.2.2 - 27.25.2.1.2.2 Variation 2: From a Cyclic Sulfinamide [Seite 475]
1.13.1.2.1.3 - 27.25.2.1.3 Method 3: Synthesis from Ortho Esters [Seite 476]
1.13.1.2.1.4 - 27.25.2.1.4 Method 4: Synthesis from an Aldehyde Hydrate [Seite 477]
1.13.1.2.1.5 - 27.25.2.1.5 Method 5: Synthesis from Carbonyl Derivatives [Seite 477]
1.13.1.2.1.5.1 - 27.25.2.1.5.1 Variation 1: From 1,2,3-Oxathiazolidine 2-Oxides [Seite 477]
1.13.1.2.1.5.2 - 27.25.2.1.5.2 Variation 2: From Sulfinate Esters [Seite 479]
1.13.1.2.1.5.3 - 27.25.2.1.5.3 Variation 3: From an N-Sulfinylbornane-10,2-sultam [Seite 481]
1.13.1.2.1.5.4 - 27.25.2.1.5.4 Variation 4: From Sulfinamides [Seite 482]
1.13.1.2.1.5.5 - 27.25.2.1.5.5 Variation 5: From a Phosphazene [Seite 485]
1.13.1.2.1.6 - 27.25.2.1.6 Method 6: Synthesis from Sulfoximides [Seite 486]
1.13.1.2.1.7 - 27.25.2.1.7 Method 7: Synthesis from Other N-Sulfinylimines [Seite 487]
1.13.1.2.2 - 27.25.2.2 Applications of Product Subclass 2 in Organic Synthesis [Seite 488]
1.13.1.3 - 27.25.3 Product Subclass 3: N-Sulfonylimines [Seite 490]
1.13.1.3.1 - 27.25.3.1 Synthesis of Products of Subclass 3 [Seite 490]
1.13.1.3.1.1 - 27.25.3.1.1 Method 1: Synthesis from Acetals [Seite 490]
1.13.1.3.1.1.1 - 27.25.3.1.1.1 Variation 1: From O,O-Acetals and Sulfonamides [Seite 490]
1.13.1.3.1.1.2 - 27.25.3.1.1.2 Variation 2: From N-[(Arylsulfonyl)methyl]arenesulfonamides [Seite 491]
1.13.1.3.1.2 - 27.25.3.1.2 Method 2: Synthesis from Alkenes and Allenes [Seite 492]
1.13.1.3.1.2.1 - 27.25.3.1.2.1 Variation 1: By Oxidative Amination [Seite 492]
1.13.1.3.1.2.2 - 27.25.3.1.2.2 Variation 2: From N,N-Dihalosulfonamides [Seite 493]
1.13.1.3.1.2.3 - 27.25.3.1.2.3 Variation 3: From Sulfonyl Azides [Seite 493]
1.13.1.3.1.2.4 - 27.25.3.1.2.4 Variation 4: From Oxazolidinones [Seite 495]
1.13.1.3.1.3 - 27.25.3.1.3 Method 3: Synthesis from Alkynes [Seite 496]
1.13.1.3.1.3.1 - 27.25.3.1.3.1 Variation 1: By a Hydroamination Reaction [Seite 496]
1.13.1.3.1.3.2 - 27.25.3.1.3.2 Variation 2: From Sulfonyl Azides [Seite 498]
1.13.1.3.1.3.3 - 27.25.3.1.3.3 Variation 3: Through Iminobismuthane Addition [Seite 499]
1.13.1.3.1.4 - 27.25.3.1.4 Method 4: Synthesis from Aziridines [Seite 500]
1.13.1.3.1.5 - 27.25.3.1.5 Method 5: Synthesis from Carbonyl Compounds [Seite 501]
1.13.1.3.1.5.1 - 27.25.3.1.5.1 Variation 1: From Sulfonamides [Seite 501]
1.13.1.3.1.5.2 - 27.25.3.1.5.2 Variation 2: From Isocyanates [Seite 506]
1.13.1.3.1.5.3 - 27.25.3.1.5.3 Variation 3: From N-Sulfinylsulfonamides [Seite 507]
1.13.1.3.1.5.4 - 27.25.3.1.5.4 Variation 4: From Chloramine-T [Seite 508]
1.13.1.3.1.6 - 27.25.3.1.6 Method 6: Synthesis from Other Imines [Seite 510]
1.13.1.3.1.6.1 - 27.25.3.1.6.1 Variation 1: From Oximes [Seite 510]
1.13.1.3.1.6.2 - 27.25.3.1.6.2 Variation 2: From N-(Trimethylsilyl)imines [Seite 512]
1.13.1.3.1.6.3 - 27.25.3.1.6.3 Variation 3: From N-Sulfanylimines [Seite 512]
1.13.1.3.1.6.4 - 27.25.3.1.6.4 Variation 4: From N-Sulfinylimines [Seite 513]
1.13.1.3.1.6.5 - 27.25.3.1.6.5 Variation 5: From Imidoyl Chlorides [Seite 514]
1.13.1.3.1.7 - 27.25.3.1.7 Method 7: Synthesis from Sulfimides [Seite 515]
1.13.1.3.1.8 - 27.25.3.1.8 Method 8: Synthesis by Oxidation of N-Sulfonylanilines [Seite 517]
1.13.1.3.1.9 - 27.25.3.1.9 Method 9: Synthesis from N-Sulfonylamides [Seite 524]
1.13.1.3.2 - 27.25.3.2 Applications of Product Subclass 3 in Organic Synthesis [Seite 524]
1.13.1.4 - 27.25.4 Product Subclass 4: N-Selanylimines [Seite 525]
1.13.1.4.1 - 27.25.4.1 Synthesis of Product Subclass 4 [Seite 525]
1.13.1.4.1.1 - 27.25.4.1.1 Method 1: Synthesis from N-Unsubstituted Imines [Seite 525]
1.13.1.4.1.2 - 27.25.4.1.2 Method 2: Synthesis by Oxidation of Phenols [Seite 525]
1.13.1.4.1.3 - 27.25.4.1.3 Method 3: Synthesis from N-Selenamides [Seite 527]
1.13.1.5 - 27.25.5 Product Subclass 5: N-Seleninylimines and Related Compounds [Seite 527]
1.13.1.5.1 - 27.25.5.1 Synthesis of Product Subclass 5 [Seite 527]
1.13.1.5.1.1 - 27.25.5.1.1 Method 1: Synthesis from Imines and Imine Derivatives [Seite 527]
1.13.1.5.1.1.1 - 27.25.5.1.1.1 Variation 1: From Imines [Seite 528]
1.13.1.5.1.1.2 - 27.25.5.1.1.2 Variation 2: From N-Chloroimines [Seite 528]
1.13.1.6 - 27.25.6 Product Subclass 6: N-Tellanylimines [Seite 528]
1.13.1.6.1 - 27.25.6.1 Synthesis of Product Subclass 6 [Seite 528]
1.13.1.6.1.1 - 27.25.6.1.1 Method 1: From N-Metalloimines [Seite 528]
1.13.1.6.1.2 - 27.25.6.1.2 Method 2: From Pentafluorotellurium Isocyanate [Seite 529]
1.14 - Author Index [Seite 538]
1.15 - Abbreviations [Seite 560]
1.16 - List of All Volumes [Seite 566]
Abstracts
P. Bertus, F. Boeda, and M. S. M. Pearson-Long
This chapter is an update to the earlier Science of Synthesis contribution describing the synthesis and application of titanium complexes in organic synthesis. This update focuses on the synthesis of cyclopropane derivatives using titanium reagents, with particular emphasis on the preparation of cyclopropanols from carboxylic esters (Kulinkovich reaction) and cyclopropylamines from carboxylic amides or nitriles.
Keywords: amides · bicyclic compounds · carbonates · cyclopropanes · cyclopropanols · cyclopropylamines · esters · Grignard reagents · imides · magnesium · nitriles · titanium
A. Meltzer and D. Scheschkewitz
The syntheses of stable and marginally stable compounds with Si=Si bonds, i.e. linear and cyclic disilenes as well as tetrasilabutadienes, are reviewed. Typical procedures are described including detailed special requirements and precautions.
Keywords: alkene analogues · coupling reactions · cyclic compounds · dehalogenation · disilenes · disilenides · disilynes · photolysis · reductive coupling · silanes · silicon compounds · silylenes · silyl halides · unsaturated compounds
M. Yus and F. Foubelo
This manuscript describes the preparation of functionalized organolithium compounds by reductive opening of heterocycles and further reaction of these intermediates with electrophiles.
Keywords: activation of C—O bonds · alkali metal compounds · carbanions · carbon—metal bonds · heterocycles · lithiation · lithium compounds · radical ions · reductive cleavage
L. Degennaro, F. M. Perna, and S. Florio
Three-membered ring heterocycles such as epoxides and aziridines, whose structural motif occurs frequently in natural products and biologically active substances, are an uncommon combination of reactivity, synthetic flexibility, and atom economy. Readily accessible, also in enantioenriched form, they are mainly used as electrophiles, undergoing highly regioselective ring-opening reactions when reacted with nucleophiles. There are, however, many other less conventional but useful reactions these small-ring heterocycles may undergo. This chapter surveys a selection of the most recent advances in the chemistry of α-lithiated epoxides and aziridines, which can be simply generated by treatment of the parent epoxide or aziridine with strong bases such as organolithiums or lithium amides. Such lithiated species are relatively stable and can be captured with a number of electrophiles to give more functionalized oxiranes and aziridines or undergo other transformations including 1,2-organo shifts to enolates, eliminative dimerization, β-elimination, intramolecular cyclopropanation onto a double bond (C=C insertion), transannular C—H insertion, and reductive alkylation.
Keywords: oxiranes · aziridines · small-ring heterocycles · α-lithiation · carbenoids · organolithiums · configurational stability · asymmetric synthesis
G. Manolikakes
Transition-metal-catalyzed reactions with organolithiums are a useful tool for the formation of carbon—carbon bonds. This chapter covers reactions with organolithium compounds catalyzed by various transition metals such as copper, palladium, or iron.
Keywords: lithium compounds · cross coupling · copper catalysis · palladium catalysis · iron catalysis · carbolithiation · asymmetric catalysis
S. M. Sakya and J. Yang
This manuscript concerns three types of compound: 1,4-dioxins, 1,4-benzodioxins, and dibenzo[b,e][1,4]dioxins, and covers recent syntheses of these substrates that have not previously been highlighted in Section 16.2 of Science of Synthesis.
Keywords: aromatization · base-induced coupling · 1,4-benzodioxins · Diels–Alder reaction · 1,4-dioxins · dibenzo[b,e][1,4]dioxins · lithium–halogen exchange · ring-closing metathesis · ring-closure reactions · Stille coupling · substituent modification · Vilsmeier reaction
F. K. Yoshimoto and Q. Li
1,2-Dithiins are six-membered rings with two double bonds and two sulfur atoms within the ring. Related compounds include 3,6-dihydro-1,2-dithiins, 1,4-dihydrobenzo[d][1,2]dithiins, and dibenzo[c,e][1,2]dithiins. A wide variety of compounds observed in nature are found to contain the dithiin motif and the group is implicated in a wide range of biological activity. 1,2-Dithiins have also been used in other fields, for example as organic transistors and ligands for transition metals. This section updates previously published material in Science of Synthesis and in particular focuses on synthesis by ring-closure reactions and applications of the group in reactions with transition metals, Lewis acids, diazo compounds, alkynes, and enzymes.
Keywords: cyclization · diazo compounds · dibenzo[c,e][1,2]dithiins · Diels–Alder reaction · 1,4-dihydrobenzo[d][1,2]dithiins · 3,6-dihydro-1,2-dithiins · dimerization · 1,2-dithianes · 1,2-dithiins · enzymes · Lewis acids · phase-transfer catalysis · photolysis · ring-closing metathesis · ring-closure reactions · sulfonation · transition metals
J. Hong
This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of oxepins. It focuses on the literature published in the period 2003–2011.
Keywords: cycloaddition · dehydrogenation · isomerization · Michael addition · nucleophilic substitution · ring expansion
J. Hong
This manuscript is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of benzoxepins. It focuses on the literature published in the period 2003–2011.
Keywords: annulation · condensation reactions · cyclization · cyclocondensation · rearrangement · ring closure · ring expansion · transition metals
J. E. Camp
This manuscript is an update of the earlier Science of Synthesis contribution describing methods for the synthesis of fully unsaturated azepines, cyclopentazepines, and their phosphorus analogues. It focuses on the literature published between 2003 and 2010.
Keywords: azepines · cyclopentazepines · electrocyclization · Diels–Alder · photolytic decomposition · rearrangement · C-amination · C-alkoxylation · Friedel–Crafts · azepinium ion
J. E. Camp
This manuscript is an update of the earlier Science of Synthesis contribution describing methods for the synthesis of fully unsaturated benzazepines and their group 15 analogues. It focuses on the literature published between 2003 and 2010.
Keywords: benzazepines · dibenzoheterepins · tribenzoheterepins · condensation · Bischler–Napieralski · tandem reaction · phase-transfer catalysis · ring enlargement · photodimerization · benzoheterepins · Friedel–Crafts
D. M. Rudzinski and N. E. Leadbeater
The synthesis of aryl and hetaryl nitriles by metal-catalyzed cross-coupling reactions is presented. Attention is focused mainly on key methodologies published in the period 2003–2011. As well as the use of alkali metal cyanide salts as sources of cyanide, the application of the less toxic and increasingly popular potassium hexacyanoferrate(II) is also discussed.
Keywords: nitriles · cyanide · cyanation · cross coupling · palladium · nickel · copper · aryl halides · hetaryl halides · aryl trifluoromethanesulfonates · aryl methanesulfonates