Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
Professor Malcolm Levitt, School of Chemistry,?University of Southampton, UK.
Preface to the First Edition.
Introduction.
Part 1 Nuclear Magnetism.
1 Matter.
1.1 Atoms and Nuclei.
1.2 Spin.
1.3 Nuclei.
1.4 Nuclear Spin.
1.5 Atomic and Molecular Structure.
1.6 States of Matter.
Notes.
Further Reading.
Exercises.
2 Magnetism.
2.1 The Electromagnetic Field.
2.2 Macroscopic Magnetism.
2.3 Microscopic Magnetism.
2.4 Spin Precession.
2.5 Larmor Frequency.
2.6 Spin-Lattice Relaxation: Nuclear Paramagnetism.
2.7 Transverse Magnetization and Transverse Relaxation.
2.8 NMR Signal.
2.9 Electronic Magnetism.
3 NMR Spectroscopy.
3.1 A Simple Pulse Sequence.
3.2 A Simple Spectrum.
3.4 Relative Spectral Frequencies: Case of Positive
Gyromagnetic Ratio.
3.5 Relative Spectral Frequencies: Case of Negative Gyromagnetic Ratio.
3.6 Inhomogeneous Broadening.
3.7 Chemical Shifts.
3.8 J-Coupling Multiplets.
3.9 Heteronuclear Decoupling.
Part 2 The NMR Experiment.
4 The NMR Spectrometer.
4.1 The Magnet.
4.2 The Transmitter Section.
4.3 The Duplexer.
4.4 The Probe.
4.5 The Receiver Section.
4.6 Overview of the Radio-Frequency Section.
4.7 Pulsed Field Gradients.
5 Fourier Transform NMR.
5.1 A Single-Pulse Experiment.
5.2 Signal Averaging.
5.3 Multiple-Pulse Experiments: Phase Cycling.
5.4 Heteronuclear Experiments.
5.5 Pulsed Field Gradient Sequences.
5.6 Arrayed Experiments.
5.7 NMR Signal.
5.8 NMR Spectrum.
5.9 Two-Dimensional Spectroscopy.
5.10 Three-Dimensional Spectroscopy.
Part 3 Quantum Mechanics.
6 Mathematical Techniques.
6.1 Functions.
6.2 Operators.
6.3 Eigenfunctions, Eigenvalues and Eigenvectors.
6.4 Diagonalization.
6.5 Exponential Operators.
6.6 Cyclic Commutation.
7 Review of Quantum Mechanics.
7.1 Spinless Quantum Mechanics.
7.2 Energy Levels.
7.3 Natural Units.
7.4 Superposition States and Stationary States.
7.5 Conservation Laws.
7.6 Angular Momentum.
7.7 Spin.
7.8 Spin-1/2.
7.9 Higher Spin.
Part 4 Nuclear Spin Interactions.
8 Nuclear Spin Hamiltonian.
8.1 Spin Hamiltonian Hypothesis.
8.2 Electromagnetic Interactions.
8.3 External and Internal Spin Interactions.
8.4 External Magnetic Fields.
8.5 Internal Spin Hamiltonian.
8.6 Motional Averaging.
9 Internal Spin Interactions.
9.1 Chemical Shift.
9.2 Electric Quadrupole Coupling.
9.3 Direct Dipole-Dipole Coupling.
9.4 J-Coupling.
9.5 Spin-Rotation Interaction.
9.6 Summary of the Spin Hamiltonian Terms.
Part 5 Uncoupled Spins.
10 Single Spin-1/2.
10.1 Zeeman Eigenstates.
10.2 Measurement of Angular Momentum: Quantum Indeterminacy.
10.3 Energy Levels.
10.4 Superposition States.
10.5 Spin Precession.
10.6 Rotating Frame.
10.7 Precession in the Rotating Frame.
10.8 Radio-Frequency Pulse.
11 Ensemble of Spins-1/2.
11.1 Spin Density Operator.
11.2 Populations and Coherences.
11.3 Thermal Equilibrium.
11.4 Rotating-Frame Density Operator.
11.5 Magnetization Vector.
11.6 Strong Radio-Frequency Pulse.
11.7 Free Precession Without Relaxation.
11.8 Operator Transformations.
11.9 Free Evolution with Relaxation.
11.10 Magnetization Vector Trajectories.
11.11 NMR Signal and NMR Spectrum.
11.12 Single-Pulse Spectra.
12 Experiments on Non-Interacting Spins-1/2.
12.1 Inversion Recovery: Measurement of T1.
12.2 Spin Echoes: Measurement of T2.
12.3 Spin Locking: Measurement of T1^.
12.4 Gradient Echoes.
12.5 Slice Selection.
12.6 NMR Imaging.
13 Quadrupolar Nuclei.
13.1 Spin I = 1.
13.2 Spin I = 3/2.
13.3 Spin I = 5/2.
13.4 Spins I = 7/2.
13.5 Spins I = 9/2.
Part 6 Coupled Spins.
14 Spin-1/2 Pairs.
14.1 Coupling Regimes.
14.2 Zeeman Product States and Superposition States.
14.3 Spin-Pair Hamiltonian.
14.4 Pairs of Magnetically Equivalent Spins.
14.5 Weakly Coupled Spin Pairs.
15 Homonuclear AX System.
15.1 Eigenstates and Energy Levels.
15.2 Density Operator.
15.3 Rotating Frame.
15.4 Free Evolution.
15.5 Spectrum of the AX System: Spin-Spin Splitting.
15.6 Product Operators.
15.7 Thermal Equilibrium.
15.8 Radio-Frequency Pulses.
15.9 Free Evolution of the Product Operators.
15.10 Spin Echo Sandwich.
16 Experiments on AX Systems.
16.1 COSY.
16.2 INADEQUATE.
16.3 INEPT.
16.4 Residual Dipolar Couplings.
17 Many-Spin Systems.
17.1 Molecular Spin System.
17.2 Spin Ensemble.
17.3 Motionally Suppressed J-Couplings.
17.4 Chemical Equivalence.
17.5 Magnetic Equivalence.
17.6 Weak Coupling.
17.7 Heteronuclear Spin Systems.
17.8 Alphabet Notation.
17.9 Spin Coupling Topologies.
18 Many-Spin Dynamics.
18.1 Spin Hamiltonian.
18.2 Energy Eigenstates.
18.3 Superposition States.
18.4 Spin Density Operator.
18.5 Populations and Coherences.
18.6 NMR Spectra.
18.7 Many-Spin Product Operators.
18.8 Thermal Equilibrium.
18.9 Radio-Frequency Pulses.
18.10 Free Precession.
18.11 Spin Echo Sandwiches.
18.12 INEPT in an I2S System.
18.13 COSY in Multiple-Spin Systems.
18.14 TOCSY.
Further Reading
Part 7 Motion and Relaxation.
19 Motion.
19.1 Motional Processes.
19.2 Motional Time-Scales.
19.3 Motional Effects.
19.4 Motional Averaging.
19.5 Motional Lineshapes and Two-Site Exchange.
19.6 Sample Spinning.
19.7 Longitudinal Magnetization Exchange.
19.8 Diffusion.
20 Relaxation.
20.1 Types of Relaxation.
20.2 Relaxation Mechanisms.
20.3 Random Field Relaxation.
20.4 Dipole-Dipole Relaxation.
20.5 Steady-State Nuclear Overhauser Effect.
20.6 NOESY.
20.7 ROESY.
20.8 Cross-Correlated Relaxation.
Appendices.
Appendix A.
A.1 Euler Angles and Frame Transformations.
A.2 Rotations and Cyclic Commutation.
A.3 Rotation Sandwiches.
A.4 Spin-1/2 Rotation Operators.
A.5 Quadrature Detection and Spin Coherences.
A.6 Secular Approximation.
A.7 Quadrupolar Interaction.
A.8 Strong Coupling.
A.9 J-Couplings and Magnetic Equivalence.
A.10 Spin Echo Sandwiches.
A.11 Phase Cycling.
A.12 Coherence Selection by Pulsed Field Gradients.
A.13 Bloch Equations.
A.14 Chemical Exchange.
A.15 Solomon Equations.
A.16 Cross-Relaxation Dynamics.
Appendix B.
B.1 Symbols and Abbreviations.
B.2 Answers to the Exercises.
Dateiformat: ePUBKopierschutz: Adobe-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet – also für „fließenden” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!
Weitere Informationen finden Sie in unserer E-Book Hilfe.