Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
1. Akhmanov, S. A., Vysloukh, V. A., Chirkin, A. S. Femtosecond optics of laser pulses. Nauka: Moscow; 1988.
2. Spielman, Ch., Curley, P. F., Brabec, Th., Krausz, F. Ultrabroadband femtosecond lasers. IEEE J. Quant. Electron. 1994; 30(4):1100-1114.
3. Paul, P. M., Toma, E. S., Breger, P., et al. Observation of a train of attosecond pulses from high harmonic generation. Science. 2001; 292:1689-1695.
4. Von der Linde, D., Schuler, H. Breakdown threshold and plasma formation in femtosecond laser-solid interaction. J. Opt. Soc. Am. B. 1999; 13(1):216-222.
5. Alfano, R. R. The supercontinuum laser source. New York: Springer-Verlag; 1989.
6. Chin, S. L., Brodeur, A., Petit, S., Kosareva, O. G., Kandidov, V. P. Filamentation and supercontinuum generation during the propagation of powerful ultrashort laser pulses in optical media (white light laser). J. Nonl. Opt. Phys. and Mater. 1999; 8(1):121-146.
7. Brodeur, A., Chin, S. L. Ultrafast white-light continuum generation and self-focusing in transparent condensed media. J. Opt. Soc. Am. B. 1999; 16(4):637-650.
8. Karasawa, N., Morita, R., Shigekawa, H., Yamashita, M. Generation of intense ultrabroadband optical pulses by induced phase modulation in an argon-filled singlemode hollow waveguide. Opt. Lett. 2000; 25(3):183-185.
9. Karasawa, N., et al. Comparison between theory and experiment of nonlinear propagation for a few-cycle and ultrabroadband optical pulses in a fused-silica fiber. IEEE J. of Quant. Electron. 2001; 37(3):398-404.
10. Ranka, J. K., Windeler, R. S., Stentz, A. J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 2000; 25(1):25-27.
11. Birks, T. A., Wadsworth, W. J., Russell, P. St. J., Supercontinuum generation in tapered fibers. Opt. Lett. 2000; 25(19):1415-1417.
12. Zheltikov, A. M. Holey fibers. Uspekhi Fizicheskikh Nauk. 2000; 170(11):1203-1215.
13. Nishioka, H., Odajima, W., Ueda, K., Takuma, H. Ultrabroadband flat continuum generation in multichannel propagation of terrawatt Ti: sapphire laser pulses. Opt. Lett. 1995; 20(24):2505-2507.
14. Baltuska, A., Wei, Z., Pshenichnikov, M. S., Wiersma, D. A. Optical pulse compression to 5 fs at a 1 MHz repetition rate. Opt. Lett. 1997; 22(2):102-104.
15. Nisovi, M., De Silvestri, S., Svelto, O., Szipocs, R., Ferencz, K., Spielmann, Ch. Sar- tania S., Krausz F., Compression of high-energy laser pulses below 5 fs. Opt. Lett. 1997; 22(8):522-524.
16. Brabec, Th., Krausz, F. Intense few-cycle laser fields: Frontiers of nonlinear optics. Rev. Mod. Phys. 2000; 72(2):545-591.
17. Auston, D. H., Cheung, K. P., Valdmanis, J. A., Kleinman, D. A. Cherenkov radiation from femtosecond optical pulses in electro-optic media. Phys. Rev. Lett. 1984; 53(16):1555-1558.
18. Jaroszynski, D. A., Chaix, P., Piovella, N. Superradiance in a short-pulse free-electron- laser oscillator. Phys. Rev. Lett. 1997; 78(9):1699-1702.
19. Kim, A., Ryabikin, M., Sergeev, A. M. From femtosecond to attosecond pulses. Uspe-khi Fizicheskikh Nauk. 1999; 169(1):85-103.
20. Scrinzi, A., Geissler, M., Brabec, T. Attosecond cross correlation technique. Phys. Rev. Lett. 2001; 86(3):413-415.
21. Agrawal, G. Nonlinear fiber optics. Mir: Moscow; 1996.
22. Brabec, Th., Krausz, F. Nonlinear optical pulse propagation in the single-cycle regime. Phys. Rev. Lett. 1997; 78(17):3282-3285.
23. Ranka, J. K., Gaeta, A. L. Breakdown of the slowly varying envelope approximation in the self-focusing of ultrashort pulses. Optics Letters. 1998; 23(7):534-536.
24. Bojer, G. High-power femtosecond-pulse reshaping near the zero-dispersion wavelength of an optical fiber. Optics Letters. 1999; 24(14):945-947.
25. Milosevic, N., Tempea, G., Brabec, Th. Optical pulse compression: bulk media versus hollow waveguides. Optics Letters. 2000; 25(9):672-674.
26. Karasawa, N., Nakamura, Sh., Nakagawa, N., Shibata, M., Morita, R., Shigekawa, H., Yamashita, M. Comparison between theory and experiment of nonlinear propagation for a few-cycle and ultrabroadband optical pulses in a fused-silica fiber. IEEE J. of Quantum Electronics. 2001; 37(3):398-404.
27. Belenov, E. M., Nazarkin, A. V. Some solutions of nonlinear optics equations without the approximation of slowly varying amplitudes and phases. JETP Lett. 1990; 51(5):252-255.
28. Azarenkov, A. N., Altshuller, G. B., Kozlov, S. A. Self-action of supremely short light pulses in solids, In: Huygens' Principle 1690-1990: Theory and Applications, North-Holland. Studies in Mathematical Physics. 1992; 3:429-433.
29. Bucket, A. V., Dubrovskaya, O. B., Marchenko, V. F., Sukhorukov, A. P. Solitons with a small number of periods in time or in space. Vestnik MGU, Ser. 3: Fizika, Astronomiya. 1992; 33(3):4-20.
30. Sasonov, S. V. Propagation and amplification of femtosecond light pulses in condensed media. Laser Physics. 1992; 2(2):795-801.
31. Kozlov, S. A., Sazonov, S. V. Nonlinear propagation of pulses of duration of a few oscillations of the light field in dielectric media. Zhurnal Eksperimental'noy i Teoreticheskoy Fiziki. 1997; 111(2):404-418.
32. Serkin, V. N., Schmidt, E. M., Belyaeva, T. L., Marti-Panamento, E., Salazar, H. Maxwell Femtosecond solitons. Kvantovaya Elektronika. 1997; 24(10-11):923-928. [969-972].
33. Nazarkin, A., Korn, G. Raman self-conversion of femtosecond laser pulses and generation of single-cycle radiation. Phys. Rev. A. 1998; 58(1):R61-R64.
34. Schwarzburg, A. B. Video pulses and non-periodic waves in dispersiveing media (exactly solvable models). Uspekhi Fizicheskikh Nauk. 1998; 168(1):85-103.
35. Maimistov, A. I. Some models of propagation of extremely short electromagnetic pulses in a nonlinear medium. Kvantonaya Elektronika. 2000; 30(4):287-304.
36. Bespalov, V. G., Kozlov, S. A., Shpolyanskiy, Yu. A., Walmsley, I. A. Simplified field wave equations for the nonlinear propagation of extremely short light pulses. Phys. Review A. 2002; 66:013811.
37. Berkovskiy, A. N., Kozlov, S. A., Shpolyanskiy, Y. A. Self-focusing of few-cycle light pulses in dielectric media. Phys. Review A. 2005; 72:043821.
38. Vinogradov, M. B., Rudenko, O. V., Sukhorukov, A. P. Wave theory. Moscow: Nauka; 1990.
39. Born, M., Wolf, E. Principles of optics. Nauka: Moscow; 1973.
40. Kozlov, S. A., Nonlinear optics of ultrashort pulse durationProblems of coherent and nonlinear optics. St. Petersburg: State University of Information Technologies, 2000. [12-34 Kozlov S. A., Problems of nonlinear optical pulses of extremely short duration, Bulletin of the young scientists, Fiz. ser., 2000, vol. 1, 7-16].
41. Sivukhin, D. V., General physics courseOptics. Moscow: Nauka, 1980.
42. Bespalov, V. G., Kozlov, S. A., Shpolyansky, J. A. The method of analysis of the dynamics propagation of femtosecond pulses with a range kontinuumnym in a transparent optical medium. Opticheskiy Zhurnal. 2000; 67(4):5-14.
43. Azarenkov, A. N., Altshuler, G. B., Belashenkov, N. R., Kozlov, S. A. Nonlinear non-linearity of the refractive index of the solid-state laser dielectric media. Kvantovaya Elektronika. 1993; 20(8):733-757.
44. Kozlov, S. A. The classical theory of dispersion of high lightthat. Optika i Spektros-kopiya. 1995; 79(2):290-292.
45. Azarenkov, A. N., Altshuler, G. B., Kozlov, S. A. Nonresonant nonlinear polarization response of the substance in the field of ultrashort pulses. Optika i Spektroskopiya. 1991; 71(2):334-339.
46. Bloembergen, N., Lotem, H., Lynch, R. T. Lineshapes in coherent resonant raman scattering. Indian J. Pure and Applied Physics. 1978; 16(3):151-158.
47. Allen, L. Eberly J. Optical resonance and two-level atoms: Springer-Verlag; 1978.
48. Kryukov, P. G., Letokhov, V. S. The spread of the light pulse in a resonantly amplifying (absorbing) media. Uspekhi Fizicheskikh Nauk. 1969; 99(2):169-227.
49. Osad'ko, I. S. Selective spectroscopy of single molecules. Fizmatlit: Moscow; 2000.
50. Stumpf, S. A., Korolev, A. A., Kozlov, S. A. Propagation of strong fields of light pulses of a few oscillations in dielectric environments, Izvestiya Rossiyskoy Akademii Nauk. Seriya Fizicheskaya. 2007; 74(2):158-161.
51. Stumpf, S. A., Korolev, A. A., Kozlov, S. A. Shift of the spectrum of the light pulses...
Dateiformat: ePUBKopierschutz: Adobe-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet – also für „fließenden” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!
Weitere Informationen finden Sie in unserer E-Book Hilfe.
Dateiformat: PDFKopierschutz: Adobe-DRM (Digital Rights Management)
Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.
Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!