Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
Clearly, the general equations describing conservation of mass, momentum, and energy hold for transport phenomena occurring in all systems/devices from the macroscale to the nanoscale, outside quantum mechanics. However, for most real-world applications such equations are very difficult to solve and hence we restrict our analyses to special cases in order to understand the fundamentals and develop skills to solve simplified problems.
This chapter first reviews the necessary definitions and concepts in fluid dynamics, i.e., fluid flow, heat and mass transfer. Then the conservation laws are derived, employing different approaches to provide insight of the meaning of equation terms and their limitations.
It should be noted that Chapters 1 and 2 are reduced and updated versions of Part A chapters of the author's text Biofluid Dynamics (2006). The material (used with permission from Taylor & Francis Publishers) is now geared towards engineering students who already have had introductory courses in thermodynamics, fluid mechanics and heat transfer, or a couple of comprehensive courses in transport phenomena.
Traditionally, “fluidics” referred to a technology where fluids were used as key components of control and sensing systems. Nowadays the research and application areas of “fluidics” have been greatly expanded. Specifically, fluidics deals with transport phenomena, i.e., mass, momentum and heat transfer, in devices ranging in size from the macroscale down to the nanoscale. As it will become evident, this modern description implies two things:
So, to freshen up on macrofluidics, this chapter reviews undergraduate-level essentials in fluid mechanics and heat transfer and provides an introduction to porous media and mixture flows. Implications of geometric scaling, known as the “size reduction effect,” are briefly discussed next.
The most important scaling impact becomes apparent when considering the area-to-volume ratio of a simple fluid conduit or an entire device:
1.1
Evidently, in the micro/nanosize limit the ratio becomes very large, i.e., , where such as the hydraulic diameter, channel height, or width. This implies that in micro/nanofluidics the system's surface-area-related quantities, e.g., pressure and shear forces, become dominant. Other potentially important micro/nanoscale forces, rightly neglected in macrofluidics, are surface tension as well as electrostatic and magnetohydrodynamic forces. To provide a quick awareness of other size-related aspects, the following tabulated summary characterizes flow considerations in macrochannels versus microchannels. Specifically, it contrasts important flow conditions and phenomena in conduits of the order of meters and millimeters vs. those in microchannels being of the order of micrometers (see Table 1.1).
1.2
Table 1.1 Comparison of Flows in Macrochannels vs. Microchannels
Fluidics, as treated in this book, is part of Newtonian mechanics, i.e., dealing with deterministic, or statistically averaged, processes (see Branch A in Figure 1.1).
Figure 1.1 Branches of physics waiting for unification
For fluid flow in nanoscale systems the continuum mechanics assumption is typically invalid because the length scales of fluid molecules are on the order of nanochannel widths or heights. For example, the intermolecular distance for water molecules is 0.3-0.4 nm while for air molecules it is 3.3 nm, with a mean-free path of about 60 nm. Hence, for rarefied gases, not being in thermodynamic equilibrium, the motion and collision of packages of molecules have to be statistically simulated or measured. For liquids in nanochannels, molecular dynamics simulation, i.e., the solution of Newton's second...
Dateiformat: ePUBKopierschutz: Adobe-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet – also für „fließenden” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!
Weitere Informationen finden Sie in unserer E-Book Hilfe.
Dateiformat: PDFKopierschutz: Adobe-DRM (Digital Rights Management)
Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.
Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!