Is "zero waste engineering" possible?
This book outlines how to achieve zero waste engineering, following natural pathways that are truly sustainable. Using methods that have been developed in various areas for sustainability purposes, such as new mathematical models, recyclable material selection, and renewable energy, the authors probe the principles of zero waste engineering and how it can be applied to construction, energy production, and many other areas of engineering.
This groundbreaking new volume:
* Explores new scientific principles on which sustainability and zero waste engineering can be based
* Presents new models for energy efficiency, cooling processes, and natural chemical and material selection in industrial applications and business
* Explains how "green buildings" and "green homes" can be efficiently built and operated with zero waste
* Offers case histories and successful experiments in sustainability and zero-waste engineering
Ideal for:
Engineers and scientists of all industries, including the energy industry, construction, the process industries, and manufacturing. Chemical engineers, mechanical engineers, electrical engineers, petroleum engineers, process engineers, civil engineers, and many other types of engineers would all benefit from reading this exciting new volume.
Reihe
Auflage
Sprache
Verlagsort
Verlagsgruppe
Dateigröße
ISBN-13
978-1-119-18495-9 (9781119184959)
Schweitzer Klassifikation
1 - Cover [Seite 1]
2 - Title Page [Seite 5]
3 - Copyright Page [Seite 6]
4 - Contents [Seite 7]
5 - Preface [Seite 15]
6 - 1 Introduction [Seite 19]
6.1 - 1.1 Background [Seite 19]
6.2 - 1.2 The Deficiency of Current Engineering Practices [Seite 26]
6.3 - 1.3 The Zero-Waste Approach [Seite 35]
6.4 - 1.4 Scope of the Book [Seite 35]
6.5 - 1.5 Organization of the Book [Seite 37]
7 - 2 A Delinearized History of Time and Its Impact on Scientific Cognition [Seite 41]
7.1 - 2.1 Introduction [Seite 41]
7.1.1 - 2.1.1 The Culture of Addiction [Seite 43]
7.2 - 2.2 The Importance of The Continuous Long-Term History [Seite 46]
7.3 - 2.3 Delinearized History of Time and Knowledge [Seite 50]
7.3.1 - 2.3.1 A Discussion [Seite 59]
7.4 - 2.4 Role of Water, Air, Clay and Fire in Scientific Characterization [Seite 70]
7.5 - 2.5 A Reflection on the Purposes of Sciences [Seite 88]
7.5.1 - 2.5.1 Purpose of Humanity [Seite 89]
7.5.1.1 - 2.5.1.1 Cognitive Background: Beyond 'original sin' [Seite 90]
7.5.1.2 - 2.5.1.2 Purpose of Life and Ideal Behaviour [Seite 94]
7.6 - 2.6 Role of Intention in Technology Development [Seite 104]
7.7 - 2.7 Cyclic Nature of Civilization [Seite 108]
7.8 - 2.8 About the "New Science" of Time and Motion [Seite 116]
7.8.1 - 2.8.1 Time-Conceptions, the Tangible-Intangible Nexus, and the Social Role of Knowledge [Seite 116]
7.8.2 - 2.8.2 More about Time: Newtonian "Laws of Motion" - Versus Nature's [Seite 118]
7.8.3 - 2.8.3 Science and the Problem of Linearized Time [Seite 124]
7.8.4 - 2.8.4 Reproducibility and the Extinction of Time [Seite 125]
7.8.5 - 2.8.5 The Long Term as an Infinite Summation of "Short Terms", or T = ??i=1fi(t) [Seite 127]
7.8.6 - 2.8.6 Erasing History in Order to "Disappear" the Long-Term and Enshrine the Steady State [Seite 131]
7.8.7 - 2.8.7 First Interim "Time"-Ly Conclusion: the Anti-Nature Essence of Linearized Time [Seite 132]
7.8.8 - 2.8.8 Second Interim "Time"-Ly Conclusion: Making Time Stand Still by Way of Linearized Visualization of Space [Seite 133]
7.9 - 2.9 What is New Versus what is Permitted: Science and the Establishment? [Seite 135]
7.9.1 - 2.9.1 "Laws" of Motion, Natural "Law" & Questions of Mutability [Seite 136]
7.9.2 - 2.9.2 Scientific Disinformation [Seite 142]
7.10 - 2.10 The Nature-Science Approach [Seite 145]
7.10.1 - 2.10.1 The Origin-Pathway Approach of Nature-Science Versus The Input-Output Approach of Engineering [Seite 146]
7.10.2 - 2.10.2 Reference Frame and Dimensionality [Seite 146]
7.10.3 - 2.10.3 Can "Lumped Parameters" Address Phenomena of Only Partial Tangibility? [Seite 148]
7.10.4 - 2.10.4 Standardizing Criteria and the Intangible Aspects of Tangible Phenomena [Seite 149]
7.10.5 - 2.10.5 Consequences of Nature-Science for Classical Set Theory and Conventional Notions of Mensuration [Seite 150]
7.11 - 2.11 Conclusions [Seite 152]
8 - 3 Towards Modeling of Zero-Waste Engineering Processes with Inherent Sustainability [Seite 155]
8.1 - 3.1 Introduction [Seite 155]
8.2 - 3.2 Development of a Sustainable Model [Seite 157]
8.3 - 3.3 Problem with the Current Model: The Case of Electricity [Seite 158]
8.4 - 3.4 How Could We Have Averted the Downturn? [Seite 179]
8.4.1 - 3.4.1 Violation of Characteristic Time [Seite 185]
8.5 - 3.5 Observation of Nature: Importance of Intangibles [Seite 187]
8.6 - 3.6 Analogy of Physical Phenomena [Seite 191]
8.7 - 3.7 Intangible Cause to Tangible Consequence [Seite 192]
8.8 - 3.8 Removable Discontinuities: Phases and Renewability of Materials [Seite 193]
8.9 - 3.9 Rebalancing Mass and Energy [Seite 194]
8.10 - 3.10 ENERGY - The Existing Model [Seite 196]
8.10.1 - 3.10.1 Supplements of Mass Balance Equation [Seite 197]
8.11 - 3.11 Conclusions [Seite 199]
9 - 4 The Formulation of a Comprehensive Mass and Energy Balance Equation [Seite 201]
9.1 - 4.1 Introduction [Seite 201]
9.2 - 4.2 The Law of Conservation of Mass and Energy [Seite 206]
9.3 - 4.3 Continuity of Matter and Phase Transition [Seite 207]
9.3.1 - 4.3.1 Redefining Force and Energy [Seite 214]
9.3.1.1 - 4.3.1.1 Force [Seite 214]
9.3.1.2 - 4.3.1.2 Energy [Seite 215]
9.3.1.3 - 4.3.1.3 What is a Natural Energy Source? [Seite 219]
9.4 - 4.4 The Science of Water and Oil [Seite 223]
9.4.1 - 4.4.1 Comparison Between Water and Petroleum [Seite 227]
9.4.2 - 4.4.2 Combustion and Oxidation [Seite 241]
9.4.3 - 4.4.3 Natural Energy vs. Artificial Energy [Seite 243]
9.5 - 4.5 From Natural Energy to Natural Mass [Seite 248]
9.6 - 4.6 The Avalanche Theory of Mass and Energy [Seite 274]
9.7 - 4.7 Aims of Modeling Natural Phenomena [Seite 280]
9.8 - 4.8 Simultaneous Characterization of Matter and Energy [Seite 282]
9.8.1 - 4.8.1 Implications [Seite 284]
9.9 - 4.9 Consequences of Nature-Science for Classical Set Theory and Conventional Notions of Mensuration [Seite 287]
9.10 - 4.10 Conclusions [Seite 289]
10 - 5 Colony Collapse Disorder (CCD) and Honey Sugar Saccharine Aspartame (HSSA) Degradation in Modern Engineering [Seite 291]
10.1 - 5.1 Introduction [Seite 291]
10.2 - 5.2 Background [Seite 292]
10.3 - 5.3 The Need for the Science of Intangibles [Seite 293]
10.4 - 5.4 The Need for Multidimensional Study [Seite 302]
10.5 - 5.5 Assessing the Overall Performance of a Process [Seite 308]
10.6 - 5.6 Facts about Honey and the Science of Intangibles [Seite 313]
10.7 - 5.7 CCD In Relation to Science of Tangibles [Seite 321]
10.8 - 5.8 Possible Causes of CCD [Seite 329]
10.8.1 - 5.8.1 Genetically Engineered Crops [Seite 329]
10.8.2 - 5.8.2 "Foreign Elements" [Seite 331]
10.8.3 - 5.8.3 Electromagnetic Irradiation [Seite 333]
10.8.3.1 - 5.8.3.1 Cell Phones and CCD [Seite 338]
10.8.4 - 5.8.4 Israeli Acute Paralysis Virus (IAPV) [Seite 339]
10.9 - 5.9 The HSS® A® (Honey ? Sugar ? Saccharin® ? Aspartame®) Pathway [Seite 340]
10.9.1 - 5.9.1 Delinearized History of Honey [Seite 340]
10.9.2 - 5.9.2 The Honey Bee [Seite 348]
10.9.3 - 5.9.3 Nectar [Seite 356]
10.10 - 5.10 Honey and Cancer [Seite 362]
10.11 - 5.11 The Sugar Culture and Beyond [Seite 380]
10.12 - 5.12 The Culture of the Artificial Sweetener [Seite 386]
10.12.1 - 5.12.1 Delinearized History of Saccharin® and The Money Trail [Seite 391]
10.12.2 - 5.12.2 The Culture of Aspartame [Seite 400]
10.12.2.1 - 5.12.2.1 Delinearized History of Aspartame [Seite 402]
10.12.2.2 - 5.12.2.2 Timeline [Seite 404]
10.12.3 - 5.12.3 The Hidden Epidemic of Aspartame [Seite 418]
10.12.3.1 - 5.12.3.1 Phenylalanine [Seite 419]
10.12.3.2 - 5.12.3.2 Aspartic Acid [Seite 419]
10.12.3.3 - 5.12.3.3 Methanol [Seite 420]
10.12.3.4 - 5.12.3.4 DKP [Seite 422]
10.13 - 5.13 The Honey-Sugar-Saccharin-Aspartame Degradation in Everything [Seite 424]
10.14 - 5.14 The Nature Science Approach [Seite 429]
10.15 - 5.15 A New Approach to Product Characterization [Seite 431]
10.16 - 5.16 A Discussion [Seite 434]
10.17 - 5.17 Conclusions [Seite 437]
11 - 6 Zero-Waste Lifestyle with Inherently Sustainable Technologies [Seite 439]
11.1 - 6.1 Introduction [Seite 439]
11.2 - 6.2 Energy from Kitchen Waste (KW) and Sewage [Seite 443]
11.2.1 - 6.2.1 Estimation of the Biogas and Ammonia Production [Seite 449]
11.2.1.1 - 6.2.1.1 Calculation of Biogas Production Per Day [Seite 449]
11.2.1.2 - 6.2.1.2 Ammonia Production [Seite 450]
11.2.1.3 - 6.2.1.3 Daily Water Requirement [Seite 450]
11.3 - 6.3 Utilization of Produced Waste in a Desalination Plant [Seite 450]
11.4 - 6.4 Solar Aquatic Process to Purify Desalinated/Waste Water [Seite 456]
11.4.1 - 6.4.1 Process Description [Seite 457]
11.4.2 - 6.4.2 Utilization of Biogas in Fuel Cell [Seite 460]
11.4.2.1 - 6.4.2.1 Direct Methanol Fuel Cell (DMFC) [Seite 461]
11.5 - 6.5 Direct Use of Solar Energy [Seite 463]
11.5.1 - 6.5.1 Space Heating [Seite 465]
11.5.2 - 6.5.2 Water Heating [Seite 466]
11.5.3 - 6.5.3 Refrigeration and Air Cooling [Seite 466]
11.5.4 - 6.5.4 Solar Stirling Engine [Seite 468]
11.6 - 6.6 Sustainability Analysis [Seite 469]
11.7 - 6.6 Conclusions [Seite 472]
12 - 7 A Novel Sustainable Combined Heating/Cooling/Refrigeration System [Seite 473]
12.1 - 7.1 Introduction [Seite 473]
12.2 - 7.2 Einstein Refrigeration Cycle [Seite 476]
12.3 - 7.3 Thermodynamic Model and its Cycle's Energy Requirement [Seite 478]
12.4 - 7.4 Solar Cooler and Heat Engine [Seite 481]
12.5 - 7.5 Actual Coefficient of Performance (COP) Calculation [Seite 482]
12.5.1 - 7.5.1 Vapor Compression Cycle Refrigeration System [Seite 483]
12.6 - 7.6 Absorption Refrigeration System [Seite 484]
12.7 - 7.7 Calculation of Global Efficiency [Seite 486]
12.7.1 - 7.7.1 Heat Transfer Efficiency [Seite 487]
12.7.2 - 7.7.2 Turbine Efficiency [Seite 488]
12.7.3 - 7.7.3 Generator Efficiency [Seite 488]
12.7.4 - 7.7.4 Transmission Efficiency [Seite 489]
12.7.5 - 7.7.5 Compressor Efficiency [Seite 489]
12.7.6 - 7.7.6 Global Efficiency [Seite 489]
12.7.7 - 7.7.7 Fossil Fuel Combustion Efficiency [Seite 491]
12.7.8 - 7.7.8 Solar Energy [Seite 491]
12.7.8.1 - 7.7.8.1 Solar Collector Efficiency [Seite 491]
12.7.9 - 7.7.9 Transmission Efficiency [Seite 492]
12.8 - 7.8 Solar Energy Utilization in the Refrigeration Cycle [Seite 493]
12.9 - 7.9 The New System [Seite 494]
12.10 - 7.8 Pathway Analysis [Seite 496]
12.10.1 - 7.8.1 Environmental Pollution Observation [Seite 496]
12.10.2 - 7.8.2 Fuel Collection Stage [Seite 497]
12.10.3 - 7.8.3 Combustion Stage [Seite 497]
12.10.4 - 7.8.4 Transmission Stage [Seite 498]
12.10.4.1 - 7.8.4.1 Refrigeration Stage [Seite 498]
12.10.5 - 7.8.5 Environmentally Friendly System [Seite 499]
12.10.6 - 7.8.6 Global Economics of the Systems [Seite 499]
12.10.7 - 7.8.7 Quality of Energy [Seite 499]
12.11 - 7.9 Sustainability Analysis [Seite 500]
12.12 - 7.10 Conclusions [Seite 502]
13 - 8 A Zero-Waste Design for Direct Usage of Solar Energy [Seite 505]
13.1 - 8.1 Introduction [Seite 505]
13.2 - 8.2 The prototype [Seite 509]
13.2.1 - 8.2.1 The infrastructure [Seite 509]
13.2.2 - 8.2.2 Fluid flow process [Seite 512]
13.2.3 - 8.2.3 Solar tracking process [Seite 513]
13.3 - 8.3 Results and Discussion of Parabolic Solar Technology [Seite 513]
13.4 - 8.4 Conclusions [Seite 520]
14 - 9 Investigation of Vegetable Oil as The Thermal Fluid in A Parabolic Solar Collector [Seite 521]
14.1 - 9.1 Introduction [Seite 521]
14.2 - 9.2 Experimental Setup and Procedures [Seite 525]
14.2.1 - 9.2.1 Parabolic solar collector assembly [Seite 525]
14.2.2 - 9.2.2 Solar pump and PV solar panel [Seite 527]
14.2.3 - 9.2.3 Solar heat transfer fluid (thermal fluid) [Seite 528]
14.2.4 - 9.3.4 Experimental Procedure [Seite 529]
14.3 - 9.4 Results and Discussion [Seite 529]
14.4 - 9.5 Conclusions [Seite 533]
15 - 10 The Potential of Biogas in Zero-Waste Mode of a Cold-Climate Environment [Seite 535]
15.1 - 10.1 Introduction [Seite 535]
15.2 - 10.2 Background [Seite 536]
15.3 - 10.3 Biogas Fermentation [Seite 538]
15.4 - 10.4 Factors Involved in Anaerobic Digestion [Seite 539]
15.5 - 10.5 Heath and Environmental Issue [Seite 544]
15.6 - 10.6 Digesters in Cold Countries [Seite 546]
15.7 - 10.7 Experimental Setup and Procedures [Seite 547]
15.7.1 - 10.7.1 Experimental Apparatus [Seite 547]
15.7.1.1 - 10.7.1.1 Anaerobic Digester Assembly [Seite 547]
15.7.1.2 - 10.7.1.2 Temperature Control Unit [Seite 548]
15.7.2 - 10.7.2 Experimental Procedure [Seite 550]
15.7.2.1 - 10.7.2.1 The Biogas Measuring System [Seite 550]
15.7.2.2 - 10.7.2.2 Kitchen Waste Preparation [Seite 550]
15.7.2.3 - 10.7.2.3 Bacterial Inoculums [Seite 550]
15.8 - 10.8 Discussion [Seite 550]
15.9 - 10.9 Conclusions [Seite 554]
16 - 11 The New Synthesis: Application of All Natural Materials for Engineering Applications [Seite 555]
16.1 - 11.1 Introduction [Seite 555]
16.2 - 11.2 Metal Waste Removal with Natural Materials [Seite 556]
16.2.1 - 11.2.1 Natural Adsorbents [Seite 556]
16.2.1.1 - 11.2.1.1 Effect of pH [Seite 560]
16.3 - 11.3 Natural Materials as Bonding Agents [Seite 562]
16.3.1 - 11.3.1 Toxic and Hazardous Properties of Adhesives [Seite 563]
16.3.1.1 - 11.3.1.1 Toxicity from Existing Wood Panels [Seite 565]
16.3.1.2 - 11.3.1.2 Indoor Air Pollution [Seite 566]
16.3.1.3 - 11.3.1.3 Air Pollution in the Work Place [Seite 566]
16.3.1.4 - 11.3.1.4 Indirect Air Pollution [Seite 567]
16.3.1.5 - 11.3.1.5 Indirect Water Pollution [Seite 567]
16.3.2 - 11.3.2 Sustainable Technology for Adhesive Preparation [Seite 567]
16.3.3 - 11.3.3 Materials and Methods [Seite 569]
16.3.4 - 11.3.4 Formulation of Adhesives [Seite 571]
16.3.5 - 11.3.5 Testing Media [Seite 572]
16.3.6 - 11.3.6 Testing Method and Standards [Seite 572]
16.3.7 - 11.3.7 Results and Discussion [Seite 573]
16.3.7.1 - 11.3.7.1 Natural Adhesives [Seite 574]
16.3.7.2 - 11.3.7.2 Selection of Adhesives [Seite 575]
16.3.7.3 - 11.3.7.3 Test Results of Adhesive Strength [Seite 576]
16.3.8 - 11.3.8 Application of the Adhesives [Seite 578]
16.3.8.1 - 11.3.8.1 Book-binding Adhesive [Seite 578]
16.3.8.2 - 11.3.8.2 Adhesive for Children and People of Special Needs [Seite 580]
16.3.8.3 - 11.3.8.3 Adhesive for Postal Stamps and Envelopes [Seite 580]
16.3.8.4 - 11.3.8.4 Adhesive for Ceramics [Seite 581]
16.3.8.5 - 11.3.8.5 Alternative to Plaster of Paris [Seite 583]
16.3.8.6 - 11.3.8.6 Making of Particle Boards [Seite 583]
16.3.8.7 - 11.3.8.7 Making of Sand Blocks [Seite 584]
16.4 - 11.4 Conclusions [Seite 585]
17 - 12 Economic Assessment of Zero-Waste Engineering [Seite 587]
17.1 - 12.1 Introduction [Seite 587]
17.2 - 12.2 Delinearized History of the Modern Era [Seite 588]
17.2.1 - 12.2.1 The Honey-Sugar-Saccharin-Aspartame Degradation in Everything [Seite 590]
17.2.2 - 12.2.2 HSS® A® Pathway in Economic Investment Projects [Seite 595]
17.3 - 12.3 Insufficiency of Conventional Economic Models [Seite 599]
17.4 - 12.4 The New Synthesis [Seite 602]
17.5 - 12.5 The New Investment Model, Conforming to the Information Age [Seite 605]
17.6 - 12.6 The Most Important Research Questions in the Information Age [Seite 608]
17.6.1 - 12.6.1 What is a Human and What's The Purpose of Human Lives? [Seite 608]
17.6.2 - 12.6.2 What is True? [Seite 609]
17.6.3 - 12.6.3 When and How The Universe Originated? [Seite 610]
17.6.4 - 12.6.4 Future Big Questions [Seite 611]
17.7 - 12.7 Future Engineering Projects [Seite 612]
17.8 - 12.8 Economics of Zero-Waste Engineering Projects [Seite 613]
17.8.1 - 12.8.1 Biogas Plant [Seite 615]
17.8.2 - 12.8.2 Solar Parabolic Trough [Seite 618]
17.8.3 - 12.8.3 A New Approach to Energy Characterization [Seite 620]
17.8.4 - 12.8.4 Global Economics [Seite 622]
17.8.5 - 12.8.5 Environmental and Ecological Impact [Seite 622]
17.9 - 12.9 Quality of Energy [Seite 623]
17.9.1 - 12.9.1 Evaluation of Process [Seite 624]
17.10 - 12.10 Conclusions [Seite 625]
18 - 13 General Conclusions and Recommendations [Seite 627]
18.1 - 13.1 Summary [Seite 627]
18.2 - 13.2 Conclusions [Seite 631]
18.3 - 13.3 Recommendations [Seite 633]
18.4 - 13.4 Future Projects [Seite 634]
18.4.1 - 13.4.1 Future Engineering Projects [Seite 635]
19 - References and Bibliography [Seite 637]
20 - Index [Seite 683]
21 - EULA [Seite 692]