The volumes includes selected and reviewed papers from the 2nd ETA Conference on Energy and Thermal Management, Air Conditioning and Waste Heat Recovery in Berlin, November 22-23, 2018. Experts from university, public authorities and industry discuss the latest technological developments and applications for energy efficiency. Main focus is on automotive industry, rail and aerospace.
Sprache
Verlagsort
Verlagsgruppe
Springer International Publishing
Illustrationen
89
119 farbige Abbildungen, 89 s/w Abbildungen
VIII, 224 p. 208 illus., 119 illus. in color.
Dateigröße
ISBN-13
978-3-030-00819-2 (9783030008192)
DOI
10.1007/978-3-030-00819-2
Schweitzer Klassifikation
1 - Foreword [Seite 5]
2 - Contents [Seite 6]
3 - Energy and Thermal Management [Seite 8]
4 - Choice of Energetically Optimal Operating Points in Thermal Management of Electric Drivetrain Components [Seite 9]
4.1 - Abstract [Seite 9]
4.2 - 1 Introduction [Seite 9]
4.3 - 2 Simulation Model [Seite 10]
4.3.1 - 2.1 Drivetrain Model [Seite 10]
4.3.2 - 2.2 Cooling Circuit and Underhood Model [Seite 11]
4.3.3 - 2.3 Energy Flows Within the Model [Seite 12]
4.3.4 - 2.4 Model Parametrization [Seite 12]
4.4 - 3 Simulation Approach [Seite 14]
4.4.1 - 3.1 Cooling System Control Strategy [Seite 15]
4.4.2 - 3.2 Boundary Conditions [Seite 15]
4.5 - 4 Simulation Results [Seite 16]
4.6 - 5 Conclusion and Outlook [Seite 18]
4.7 - Acknowledgements [Seite 19]
4.8 - Appendix [Seite 19]
4.9 - References [Seite 20]
5 - Higher Cruising Range Through Smart Thermal Management in Electric Vehicles - Interaction Between Air Conditioning and Cooling System Components in the Overall Network [Seite 21]
5.1 - 1 Introduction [Seite 21]
5.2 - 2 Thermal Management Requirements [Seite 22]
5.3 - 3 Concept Preparation in the Development of Thermal Management [Seite 24]
5.4 - 4 System Development [Seite 25]
5.5 - 5 Component Development [Seite 27]
5.6 - 6 Concept Evaluation [Seite 31]
5.7 - 7 Summary [Seite 35]
5.8 - References [Seite 35]
6 - Auxiliary Heating, Cooling and Power Generation in Vehicles Based on Stirling Engine Technology [Seite 36]
6.1 - Abstract [Seite 36]
6.2 - 1 Introduction [Seite 36]
6.3 - 2 Thermodynamic Fundamentals [Seite 38]
6.3.1 - 2.1 Regenerator Layout and Operating Principles [Seite 38]
6.3.2 - 2.2 Basic Analysis of Regenerative Cycles [Seite 38]
6.3.3 - 2.3 Operating Principles of the Vuilleumier Cycle and the Hybrid Cycle [Seite 39]
6.4 - 3 Practical Considerations and Potentials [Seite 41]
6.5 - 4 Conclusions for Potential Vehicular Applications [Seite 43]
6.6 - References [Seite 44]
7 - Experimental Investigation on Effect of Fuel Property on Emissions and Performance of a Light-Duty Diesel Engine [Seite 46]
7.1 - Abstract [Seite 46]
7.2 - 1 Introduction [Seite 46]
7.3 - 2 Biodiesel Preparation and Purification [Seite 48]
7.4 - 3 Experimental Methodology [Seite 49]
7.5 - 4 Results and Discussion [Seite 50]
7.6 - 5 Conclusions [Seite 53]
7.7 - Acknowledgement [Seite 53]
7.8 - References [Seite 54]
8 - Conception and First Functional Tests of a Novel Piston-Type Steam Expansion Engine for the Use in Stationary WHR Systems [Seite 55]
8.1 - Abstract [Seite 55]
8.2 - 1 Introduction [Seite 55]
8.3 - 2 Rotational Wing Piston Expansion Engine [Seite 57]
8.3.1 - 2.1 Working Principle [Seite 57]
8.3.2 - 2.2 Mechanical Components [Seite 59]
8.4 - 3 Sealing Systems on the Expander [Seite 60]
8.4.1 - 3.1 Requirements for Seals and Sealing Material [Seite 61]
8.4.2 - 3.2 Overview of the Used Rotational Sealing Concepts [Seite 61]
8.4.3 - 3.3 Concepts for Piston Seals [Seite 63]
8.4.4 - 3.4 Hub Seals [Seite 68]
8.5 - 4 Testing of Different Sealing Types [Seite 68]
8.5.1 - 4.1 Testbench [Seite 68]
8.5.2 - 4.2 Testing-Cycles [Seite 69]
8.5.3 - 4.3 Results [Seite 69]
8.5.4 - 4.4 Application on the Prototype [Seite 71]
8.6 - 5 Summary/Conclusion [Seite 71]
8.7 - References [Seite 71]
9 - Thermal High Performance Storages for Use in Vehicle Applications [Seite 72]
9.1 - Abstract [Seite 72]
9.2 - 1 Introduction [Seite 72]
9.3 - 2 Design of a Thermal High Performance Storage [Seite 73]
9.4 - 3 Boundary Conditions [Seite 75]
9.4.1 - 3.1 Reference Scenario [Seite 75]
9.4.2 - 3.2 Reference Vehicle [Seite 76]
9.4.3 - 3.3 Integration of the THS into the Vehicle [Seite 77]
9.5 - 4 Results and Discussion [Seite 78]
9.5.1 - 4.1 Properties of the Thermal High Performance Storage [Seite 78]
9.5.2 - 4.2 Range of the Vehicle [Seite 79]
9.5.3 - 4.3 Comparison of Thermal High Performance Storages to State of the Art Heating Systems [Seite 80]
9.6 - 5 Conclusion and Outlook [Seite 83]
9.7 - References [Seite 83]
10 - Determination of the Cooling Medium Composition in an Indirect Cooling System [Seite 86]
10.1 - 1 Introduction [Seite 86]
10.2 - 2 Heat Exchanger Model and Possible Applications [Seite 89]
10.2.1 - 2.1 Dimensionless Temperature Change [Seite 90]
10.2.2 - 2.2 Applications [Seite 91]
10.3 - 3 Experimental Setup and Results [Seite 92]
10.3.1 - 3.1 Test Bench [Seite 92]
10.3.2 - 3.2 Vehicle Measurements [Seite 94]
10.4 - 4 Concentration Models [Seite 97]
10.4.1 - 4.1 Characteristic Maps [Seite 97]
10.4.2 - 4.2 Analytical Model [Seite 98]
10.5 - 5 Summary and Outlook [Seite 101]
10.6 - References [Seite 103]
11 - Air Conditioning [Seite 105]
12 - Approach for the Transient Thermal Modeling of a Vehicle Cabin [Seite 106]
12.1 - 1 Introduction [Seite 106]
12.1.1 - 1.1 Modeling Approach [Seite 108]
12.2 - 2 Model Description [Seite 108]
12.2.1 - 2.1 3D Reference Model [Seite 109]
12.2.2 - 2.2 Reduced Model [Seite 110]
12.2.3 - 2.3 Parameter Modeling [Seite 112]
12.3 - 3 Validation [Seite 115]
12.4 - 4 Conclusions [Seite 121]
12.5 - References [Seite 122]
13 - Personalized Air-Conditioning in Electric Vehicles Using Sensor Fusion and Model Predictive Control [Seite 124]
13.1 - 1 Introduction [Seite 124]
13.2 - 2 System Architecture [Seite 126]
13.2.1 - 2.1 MORPHEUS Numerical Thermophysiological Model [Seite 127]
13.2.2 - 2.2 BCM Comfort Model [Seite 128]
13.2.3 - 2.3 Local Actuators [Seite 129]
13.2.4 - 2.4 Model Predictive Control [Seite 130]
13.3 - 3 Conclusion [Seite 133]
13.4 - References [Seite 134]
14 - Simply Cozy - Adaptive Controlling for an Individualized Climate Comfort [Seite 135]
14.1 - Abstract [Seite 135]
14.2 - 1 Motivation [Seite 135]
14.3 - 2 Adaptation of User Preferences to a Climate Controller [Seite 136]
14.4 - 3 Results [Seite 139]
14.5 - 4 Conclusion and Outlook [Seite 142]
14.6 - References [Seite 142]
15 - Waste Heat Recovery [Seite 143]
16 - Waste Heat Recovery Potential on Heavy Duty Long Haul Trucks - A Comparison [Seite 144]
16.1 - Abstract [Seite 144]
16.2 - 1 Introduction [Seite 144]
16.2.1 - 1.1 Context [Seite 144]
16.2.2 - 1.2 Objectives of This Study [Seite 145]
16.3 - 2 Simulation Approach and Boundary Conditions [Seite 145]
16.3.1 - 2.1 Rankine Cycle Model and Hybrid Driveline [Seite 146]
16.3.2 - 2.2 Application and Rankine Cycle Architecture Scope [Seite 148]
16.3.3 - 2.3 Road Cycle Description [Seite 149]
16.4 - 3 Results [Seite 150]
16.4.1 - 3.1 Exhaust Recovery Results [Seite 150]
16.4.2 - 3.2 Coolant Recovery Results [Seite 152]
16.5 - 4 Conclusions [Seite 153]
16.6 - References [Seite 155]
17 - Combining Low- and High-Temperature Heat Sources in a Heavy Duty Diesel Engine for Maximum Waste Heat Recovery Using Rankine and Flash Cycles [Seite 157]
17.1 - 1 Introduction [Seite 158]
17.2 - 2 Methodology [Seite 160]
17.2.1 - 2.1 The Heavy Duty Diesel Engine [Seite 160]
17.2.2 - 2.2 Thermodynamic Cycles [Seite 161]
17.3 - 3 Results [Seite 164]
17.3.1 - 3.1 Configuration 1 [Seite 165]
17.3.2 - 3.2 Configuration 2 [Seite 167]
17.3.3 - 3.3 Recuperation [Seite 168]
17.3.4 - 3.4 Long-Haul Cycle Conditions [Seite 169]
17.4 - 4 Discussion [Seite 171]
17.5 - 5 Conclusions [Seite 172]
17.6 - References [Seite 173]
18 - Simulative Investigation of the Influence of a Rankine Cycle Based Waste Heat Utilization System on Fuel Consumption and Emissions for Heavy Duty Utility Vehicles [Seite 175]
18.1 - Abstract [Seite 175]
18.2 - 1 Introduction [Seite 175]
18.3 - 2 Description Engine and Cooling System [Seite 176]
18.4 - 3 Waste Heat Recovery System Model [Seite 178]
18.4.1 - 3.1 Modeling Approach of Waste Heat Recovery System for Design Point [Seite 179]
18.4.2 - 3.2 Pre-control of Working Fluid Mass Flow [Seite 183]
18.4.3 - 3.3 Results of Simulation for Off-Design Operating Points [Seite 185]
18.5 - 4 Interaction Between Internal Combustion Engine and WHR System [Seite 186]
18.5.1 - 4.1 Comparison Between EGR Cooler and EGR Evaporator [Seite 187]
18.5.2 - 4.2 EGT Exhaust Gas Backpressure [Seite 188]
18.5.3 - 4.3 Reduction of Engine Load [Seite 189]
18.6 - 5 Discussion of Cooling Condition for WHR System [Seite 192]
18.7 - 6 Conclusion [Seite 193]
18.8 - Acknowledgments [Seite 194]
18.9 - References [Seite 195]
19 - RETRACTED CHAPTER: Requirements for Battery Enclosures - Design Considerations and Practical Examples [Seite 197]
19.1 - Abstract [Seite 197]
19.2 - 0 [Seite 197]
20 - Design of a Thermoelectric Generator for Heavy-Duty Vehicles: Approach Based on WHVC and Real Driving Vehicle Boundary Conditions [Seite 198]
20.1 - 1 Introduction [Seite 199]
20.2 - 2 Methodology [Seite 200]
20.2.1 - 2.1 Realistic Operation Conditions [Seite 200]
20.2.2 - 2.2 TEG Model Development [Seite 202]
20.3 - 3 Results and Discussion [Seite 205]
20.3.1 - 3.1 Potential Analyses [Seite 205]
20.3.2 - 3.2 Simulation Results and Validation [Seite 209]
20.4 - 4 Conclusions [Seite 211]
20.5 - References [Seite 212]
21 - Author Index [Seite 214]