1 - Thieme: Science of Synthesis Knowledge Updates 2017/1 [Seite 1]
2 - Title Page [Seite 6]
3 - Copyright [Seite 8]
4 - Preface [Seite 9]
5 - Abstracts [Seite 11]
6 - Science of Synthesis Knowledge Updates 2017/1 [Seite 21]
7 - Table of Contents [Seite 23]
8 - 3.6.16 Gold-Catalyzed Cycloaddition Reactions [Seite 37]
8.1 - 3.6.16.1 Cycloadditions via Gold-Containing 1,n-Dipolar Intermediates [Seite 37]
8.1.1 - 3.6.16.1.1 Method 1: Gold-Containing Benzopyrylium Intermediates [Seite 38]
8.1.1.1 - 3.6.16.1.1.1 Variation 1: Gold-Containing Benzopyrylium Azomethine Ylides [Seite 44]
8.1.1.2 - 3.6.16.1.1.2 Variation 2: Gold-Containing 2-Oxoalkyl Oxonium Species [Seite 47]
8.1.2 - 3.6.16.1.2 Method 2: Furyl-Gold 1,n-Dipole Intermediates [Seite 48]
8.1.2.1 - 3.6.16.1.2.1 Variation 1: Furyl-Gold 1,3-Dipole Intermediates [Seite 48]
8.1.2.2 - 3.6.16.1.2.2 Variation 2: Furyl-Gold 1,4-Dipole Intermediates [Seite 51]
8.1.2.3 - 3.6.16.1.2.3 Variation 3: Furan-Based ortho-Quinodimethane Intermediates [Seite 54]
8.1.3 - 3.6.16.1.3 Method 3: Gold-Containing All-Carbon 1,3-Dipoles [Seite 55]
8.2 - 3.6.16.2 Cycloadditions via Gold-Coordinated Allene Intermediates [Seite 57]
8.2.1 - 3.6.16.2.1 Method 1: Cycloadditions Initiated by Gold Activation of Allenes [Seite 57]
8.2.2 - 3.6.16.2.2 Method 2: Cycloadditions Initiated by Gold Activation of Propargylic Carboxylates [Seite 69]
8.3 - 3.6.16.3 Cycloadditions via trans-Alkenylgold Intermediates [Seite 71]
8.3.1 - 3.6.16.3.1 Method 1: trans-Alkenylgold Intermediates Generated by Alkyne Activation [Seite 71]
8.3.1.1 - 3.6.16.3.1.1 Variation 1: Alkynes as Latent Alkenes in Gold-Catalyzed Cycloadditions [Seite 74]
8.4 - 3.6.16.4 Cycloadditions via Gold Carbene Intermediates [Seite 76]
8.4.1 - 3.6.16.4.1 Method 1: Gold Carbenes Generated by Cycloisomerization of Alkynes and Alkenes [Seite 76]
8.4.2 - 3.6.16.4.2 Method 2: Gold Carbenes Generated by 1,2-Acyloxy Migration of Propargyl Carboxylates [Seite 81]
8.4.3 - 3.6.16.4.3 Method 3: Gold Carbenes Generated by Alkyne Oxidation [Seite 84]
8.4.3.1 - 3.6.16.4.3.1 Variation 1: Gold-Catalyzed Cycloaddition Reactions by Nitrene Transfer [Seite 87]
8.4.3.2 - 3.6.16.4.3.2 Variation 2: Gold-Catalyzed Cycloaddition Reactions by Carbene Transfer [Seite 88]
8.4.4 - 3.6.16.4.4 Method 4: Gold Carbenes Generated by Diazo Decomposition [Seite 89]
8.5 - 3.6.16.5 Cycloadditions via Gold-Coordinated Heteroatom Intermediates [Seite 91]
9 - 4.4.7 Product Subclass 7: Silylboron Reagents [Seite 101]
9.1 - 4.4.7.1 Synthesis of Product Subclass 7 [Seite 104]
9.1.1 - 4.4.7.1.1 Preparation by Si-B Bond Formation [Seite 104]
9.1.1.1 - 4.4.7.1.1.1 Method 1: Nucleophilic Substitution at Boron with Silyllithium Reagents [Seite 104]
9.1.1.1.1 - 4.4.7.1.1.1.1 Variation 1: Substitution of Amino-Substituted Chloroboranes [Seite 104]
9.1.1.1.2 - 4.4.7.1.1.1.2 Variation 2: Substitution of a Diaryl-Substituted Fluoroborane [Seite 105]
9.1.1.1.3 - 4.4.7.1.1.1.3 Variation 3: Nucleophilic Substitution of Diol-Substituted Hydro- or Alkoxyboranes [Seite 106]
9.1.1.2 - 4.4.7.1.1.2 Method 2: Iridium-Catalyzed Borylation of Trialkylsilanes [Seite 107]
9.1.1.3 - 4.4.7.1.1.3 Method 3: Reductive Coupling of Chlorosilanes and Chloroboranes [Seite 108]
9.1.2 - 4.4.7.1.2 Modification of Si-B Substitution Pattern [Seite 109]
9.1.2.1 - 4.4.7.1.2.1 Method 1: Ligand Exchange at the Boron Atom [Seite 109]
9.1.2.2 - 4.4.7.1.2.2 Method 2: Manipulation at the Silicon Atom [Seite 111]
9.2 - 4.4.7.2 Applications of Product Subclass 7 in Organic Synthesis [Seite 113]
9.2.1 - 4.4.7.2.1 Method 1: Reactions with Alkynes [Seite 113]
9.2.1.1 - 4.4.7.2.1.1 Variation 1: Transition-Metal-Catalyzed Silaboration [Seite 113]
9.2.1.2 - 4.4.7.2.1.2 Variation 2: Palladium-Catalyzed Silaborative Cyclization [Seite 119]
9.2.1.3 - 4.4.7.2.1.3 Variation 3: Nickel-Catalyzed Silaborative Dimerization [Seite 120]
9.2.1.4 - 4.4.7.2.1.4 Variation 4: Palladium-Catalyzed (2 + 2 + 1) Cycloaddition with Silylenes [Seite 121]
9.2.1.5 - 4.4.7.2.1.5 Variation 5: Copper-Catalyzed Silylation [Seite 122]
9.2.2 - 4.4.7.2.2 Method 2: Reactions with Alkenes [Seite 127]
9.2.2.1 - 4.4.7.2.2.1 Variation 1: Platinum-Catalyzed Silaboration [Seite 127]
9.2.2.2 - 4.4.7.2.2.2 Variation 2: Base-Catalyzed Silaboration [Seite 131]
9.2.2.3 - 4.4.7.2.2.3 Variation 3: Photochemical Radical Silylation [Seite 132]
9.2.3 - 4.4.7.2.3 Method 3: Reactions with Conjugated Dienes and Enynes [Seite 133]
9.2.3.1 - 4.4.7.2.3.1 Variation 1: Transition-Metal-Catalyzed 1,4-Silaboration [Seite 133]
9.2.3.2 - 4.4.7.2.3.2 Variation 2: Platinum-Catalyzed Silaborative Coupling of 1,3-Dienes and Aldehydes [Seite 136]
9.2.3.3 - 4.4.7.2.3.3 Variation 3: Nickel-Catalyzed Silylative Coupling of 1,3-Dienes and Aldehydes [Seite 137]
9.2.3.4 - 4.4.7.2.3.4 Variation 4: Palladium-Catalyzed (4 + 1) Cycloaddition with Silylenes [Seite 138]
9.2.4 - 4.4.7.2.4 Method 4: Reactions with Allenes [Seite 140]
9.2.4.1 - 4.4.7.2.4.1 Variation 1: Palladium-Catalyzed Silaboration [Seite 140]
9.2.4.2 - 4.4.7.2.4.2 Variation 2: Copper-Catalyzed Silylation [Seite 145]
9.2.5 - 4.4.7.2.5 Method 5: Reactions with C=X Bonds [Seite 151]
9.2.5.1 - 4.4.7.2.5.1 Variation 1: 1,2-Silylation of Aldehydes [Seite 151]
9.2.5.2 - 4.4.7.2.5.2 Variation 2: 1,2-Silylation of Imines [Seite 153]
9.2.5.3 - 4.4.7.2.5.3 Variation 3: Reaction with Anhydrides [Seite 157]
9.2.6 - 4.4.7.2.6 Method 6: Reactions with ?,?-Unsaturated Carbonyl and Carboxy Compounds and Derivatives Thereof [Seite 158]
9.2.6.1 - 4.4.7.2.6.1 Variation 1: Transition-Metal-Catalyzed 1,4-Silylation of Enones and ?,?- Unsaturated Esters [Seite 158]
9.2.6.2 - 4.4.7.2.6.2 Variation 2: N-Heterocyclic Carbene Catalyzed 1,4-Silylation of Enones, Enals, or Unsaturated Esters [Seite 171]
9.2.6.3 - 4.4.7.2.6.3 Variation 3: Copper-Catalyzed 1,4-Silylation of Ynones and Derivatives Thereof [Seite 173]
9.2.6.4 - 4.4.7.2.6.4 Variation 4: Metal-Free Phosphine-Catalyzed Silaboration of Ynoates [Seite 178]
9.2.7 - 4.4.7.2.7 Method 7: Reactions with Allylic and Propargylic Electrophiles [Seite 179]
9.2.7.1 - 4.4.7.2.7.1 Variation 1: Copper-Catalyzed Allylic Substitution [Seite 179]
9.2.7.2 - 4.4.7.2.7.2 Variation 2: Silylative Cyclopropanation [Seite 184]
9.2.7.3 - 4.4.7.2.7.3 Variation 3: Transition-Metal-Catalyzed Propargylic Substitution [Seite 185]
9.2.8 - 4.4.7.2.8 Method 8: Reactions with (Het)arenes [Seite 187]
9.2.8.1 - 4.4.7.2.8.1 Variation 1: Silaborative Dearomatization of Nitrogen Heterocycles [Seite 187]
9.2.8.2 - 4.4.7.2.8.2 Variation 2: Nickel/Copper-Catalyzed Silylation [Seite 189]
9.2.8.3 - 4.4.7.2.8.3 Variation 3: Base-Catalyzed Borylation [Seite 191]
9.2.8.4 - 4.4.7.2.8.4 Variation 4: Iridium-Catalyzed Borylation [Seite 194]
9.2.9 - 4.4.7.2.9 Method 9: Reactions with Strained Ring Compounds [Seite 195]
9.2.9.1 - 4.4.7.2.9.1 Variation 1: Silaboration of Methylenecyclopropanes [Seite 195]
9.2.9.2 - 4.4.7.2.9.2 Variation 2: Silaboration of Vinylcyclopropanes, Vinylcyclobutanes, and Related Compounds [Seite 199]
9.2.10 - 4.4.7.2.10 Method 10: Reactions with Carbenoids and Related Compounds [Seite 201]
9.2.10.1 - 4.4.7.2.10.1 Variation 1: Insertion of Alkylidene-Type Carbenoids into the Si-B Bond [Seite 201]
9.2.10.2 - 4.4.7.2.10.2 Variation 2: Insertion of sp3-Carbon-Centered Carbenoids into the Si-B Bond [Seite 204]
9.2.10.3 - 4.4.7.2.10.3 Variation 3: Insertion of Isocyanides into the Si-B Bond [Seite 206]
9.2.11 - 4.4.7.2.11 Method 11: Miscellaneous Reactions [Seite 208]
9.2.11.1 - 4.4.7.2.11.1 Variation 1: Stereoselective Deoxygenation of trans-Stilbene Oxides [Seite 208]
9.2.11.2 - 4.4.7.2.11.2 Variation 2: B-N Bond Formation by Desilacoupling Catalyzed by a Strontium Bisamide Base [Seite 209]
10 - 4.4.11 Product Subclass 11: Silyllithium and Related Silyl Alkali Metal Reagents [Seite 213]
10.1 - 4.4.11.1 Method 1: Reductive Cleavage of Disilanes with Alkali Metals [Seite 214]
10.2 - 4.4.11.2 Method 2: Reduction of Halotriorganosilanes with Alkali Metals [Seite 215]
10.3 - 4.4.11.3 Method 3: Nucleophilic Cleavage of Si-M Bonds (M = Si, Sn, etc.) [Seite 216]
10.3.1 - 4.4.11.3.1 Variation 1: Si-Si Bond Cleavage [Seite 217]
10.3.2 - 4.4.11.3.2 Variation 2: Si-Sn Bond Cleavage [Seite 219]
10.4 - 4.4.11.4 Method 4: Si-H Bond Cleavage [Seite 219]
10.4.1 - 4.4.11.4.1 Variation 1: Si-H Bond Cleavage by Alkali Metals [Seite 219]
10.4.2 - 4.4.11.4.2 Variation 2: Si-H Bond Cleavage by Alkali Metal Hydrides [Seite 221]
10.5 - 4.4.11.5 Method 5: Preparation via Disilylmercury Compounds [Seite 222]
11 - 4.4.19.4 Silyl Sulfides and Selenides (Update 2017) [Seite 225]
11.1 - 4.4.19.4.1 Synthesis of Silyl Sulfides and Selenides [Seite 225]
11.1.1 - 4.4.19.4.1.1 Method 1: Synthesis by Reaction of Alkali Metals, Chalcogens, and Halosilanes or Alkali Metal Chalcogenides and Halosilanes [Seite 225]
11.1.1.1 - 4.4.19.4.1.1.1 Variation 1: From Lithium, Sulfur, and Halosilanes [Seite 225]
11.1.1.2 - 4.4.19.4.1.1.2 Variation 2: From Sodium, Sulfur, and Halosilanes [Seite 226]
11.1.1.3 - 4.4.19.4.1.1.3 Variation 3: From Lithium Sulfide and Halosilanes [Seite 227]
11.1.1.4 - 4.4.19.4.1.1.4 Variation 4: From Lithium Selenide and Halosilanes [Seite 228]
11.1.1.5 - 4.4.19.4.1.1.5 Variation 5: From Lithium Chalcogenides, Generated from Lithium Triethylborohydride and Chalcogens, and Halosilanes [Seite 229]
11.1.2 - 4.4.19.4.1.2 Method 2: Synthesis from Diselenides and Halosilanes [Seite 229]
11.1.2.1 - 4.4.19.4.1.2.1 Variation 1: From Dimethyl Diselenide, Lithium Aluminum Hydride, and Halosilanes [Seite 229]
11.1.2.2 - 4.4.19.4.1.2.2 Variation 2: From Diphenyl Diselenide, Sodium, and Halosilanes [Seite 230]
11.1.2.3 - 4.4.19.4.1.2.3 Variation 3: From Diphenyl Diselenide, Lithium in Liquid Ammonia, and Halosilanes [Seite 230]
11.1.3 - 4.4.19.4.1.3 Method 3: Synthesis from Selanols [Seite 231]
11.1.4 - 4.4.19.4.1.4 Method 4: Synthesis from Alkynes, Butyllithium, Sulfur, and Halosilanes [Seite 232]
11.1.5 - 4.4.19.4.1.5 Method 5: Synthesis Using Phosphorus-Based Reagents [Seite 233]
11.1.5.1 - 4.4.19.4.1.5.1 Variation 1: From Silylphosphines and Sulfur [Seite 233]
11.1.5.2 - 4.4.19.4.1.5.2 Variation 2: From Phosphine Sulfides and (Dimethylamino)trimethylsilane [Seite 233]
11.1.5.3 - 4.4.19.4.1.5.3 Variation 3: From Phosphorus Pentasulfide and Alkoxytrimethylsilanes or (Alkylsulfanyl)trimethylsilanes [Seite 234]
11.1.6 - 4.4.19.4.1.6 Method 6: Synthesis from Grignard Reagents, Selenium, and Halosilanes [Seite 234]
11.1.7 - 4.4.19.4.1.7 Method 7: Synthesis from Existing Silyl Selenides by Substitution of a Group on Selenium [Seite 235]
11.2 - 4.4.19.4.2 Applications of Silyl Sulfides and Selenides [Seite 235]
12 - 4.4.24.3 Silyl Cyanides (Update 2017) [Seite 239]
12.1 - 4.4.24.3.1 Tetracoordinate Silyl Cyanides [Seite 239]
12.1.1 - 4.4.24.3.1.1 Method 1: Transmetalation of Silyl Chlorides [Seite 239]
12.1.2 - 4.4.24.3.1.2 Method 2: Metathesis between Si-H and X-CN Bonds (X=C, N, O, Si) [Seite 240]
12.1.3 - 4.4.24.3.1.3 Method 3: Insertion of Silylenes into Isocyanides [Seite 241]
12.1.4 - 4.4.24.3.1.4 Method 4: Transformation of Si=C=N-Si Units [Seite 242]
12.2 - 4.4.24.3.2 Extracoordinate Silyl Cyanides [Seite 244]
12.2.1 - 4.4.24.3.2.1 Method 1: Reaction of Pentacoordinate Silyl Chlorides with Cyanotrimethylsilane [Seite 244]
12.2.2 - 4.4.24.3.2.2 Method 2: Reaction of Hexacoordinate Silyl Chlorides with Cyanotrimethylsilane [Seite 246]
13 - 4.4.47 Product Subclass 47: Silanols [Seite 249]
13.1 - 4.4.47.1 Synthesis of Silanols [Seite 249]
13.1.1 - 4.4.47.1.1 Method 1: Hydrolysis of Chlorosilanes [Seite 249]
13.1.1.1 - 4.4.47.1.1.1 Variation 1: Biphasic Hydrolysis of Chlorosilanes [Seite 250]
13.1.1.2 - 4.4.47.1.1.2 Variation 2: Biphasic Hydrolysis of Chlorosilanes with Triethylamine [Seite 250]
13.1.1.3 - 4.4.47.1.1.3 Variation 3: Synthesis of Bulky Silanediols from Chlorosilanes [Seite 251]
13.1.2 - 4.4.47.1.2 Method 2: Stoichiometric Oxidation of Silanes [Seite 252]
13.1.2.1 - 4.4.47.1.2.1 Variation 1: Oxidation of Silanes with Ozone [Seite 252]
13.1.2.2 - 4.4.47.1.2.2 Variation 2: Oxidation of Silanes with Peroxy Acids [Seite 253]
13.1.2.3 - 4.4.47.1.2.3 Variation 3: Oxidation of Silanes with Dioxiranes or Oxaziridines [Seite 254]
13.1.2.4 - 4.4.47.1.2.4 Variation 4: Oxidation of Silanes with Potassium Permanganate and Sonication [Seite 255]
13.1.2.5 - 4.4.47.1.2.5 Variation 5: Oxidation of Silanes with Osmium(VIII) Oxide [Seite 255]
13.1.3 - 4.4.47.1.3 Method 3: Catalytic Oxidation of Silanes [Seite 256]
13.1.3.1 - 4.4.47.1.3.1 Variation 1: Heterogeneous Catalytic Oxidation of Silanes with Water [Seite 257]
13.1.3.2 - 4.4.47.1.3.2 Variation 2: Catalytic Oxidation of Silanes with Nanoparticles [Seite 257]
13.1.3.3 - 4.4.47.1.3.3 Variation 3: Homogeneous Catalytic Oxidation of Silanes with Water [Seite 259]
13.1.3.4 - 4.4.47.1.3.4 Variation 4: Catalytic Oxidation of Silanes with Peroxides or Oxygen [Seite 264]
13.1.3.5 - 4.4.47.1.3.5 Variation 5: Organocatalytic Oxidation of Silanes [Seite 266]
13.1.4 - 4.4.47.1.4 Method 4: Hydrolysis of Aromatic C(sp2)-Si Bonds [Seite 266]
13.1.5 - 4.4.47.1.5 Method 5: Cleavage of Siloxy- and Alkoxysilanes [Seite 269]
13.2 - 4.4.47.2 Catalytic Activity of Silanols [Seite 271]
13.2.1 - 4.4.47.2.1 Method 1: Hydrogen-Bond-Donor Catalysis Involving Silanediols [Seite 271]
13.2.2 - 4.4.47.2.2 Method 2: Silanediols in Anion-Binding Catalysis [Seite 273]
13.2.3 - 4.4.47.2.3 Method 3: Catalytic Activity of Bissilanols [Seite 275]
13.2.4 - 4.4.47.2.4 Method 4: Catalytic Activity of Monosilanols [Seite 275]
13.3 - 4.4.47.3 Silanols as Directing Groups [Seite 277]
14 - 10.22.2 Product Subclass 2: Azaindol-1-ols [Seite 283]
14.1 - 10.22.2.1 Synthesis by Ring-Closure Reactions [Seite 283]
14.1.1 - 10.22.2.1.1 By Annulation to a Pyridine [Seite 283]
14.1.1.1 - 10.22.2.1.1.1 With Formation of One N-C Bond [Seite 283]
14.1.1.1.1 - 10.22.2.1.1.1.1 With Formation of the 1-2 Bond [Seite 283]
14.1.1.1.1.1 - 10.22.2.1.1.1.1.1 Method 1: From 2-(o-Nitropyridyl)acetates [Seite 283]
14.1.1.1.1.2 - 10.22.2.1.1.1.1.2 Method 2: From an (Alkenylpyridyl)hydroxylamine [Seite 285]
14.1.1.1.1.3 - 10.22.2.1.1.1.1.3 Method 3: From a 2-(3-Nitropyridin-2-yl)ethanone [Seite 286]
14.1.1.1.1.4 - 10.22.2.1.1.1.1.4 Method 4: From 2-(3-Nitropyridin-2-yl)pent-4-enenitrile [Seite 286]
14.1.1.1.2 - 10.22.2.1.1.1.2 With Formation of the 1-7a Bond [Seite 287]
14.1.1.1.2.1 - 10.22.2.1.1.1.2.1 Method 1: From 1-(3-Pyridyl)-2-nitropropene and an Isocyanide [Seite 287]
14.2 - 10.22.2.2 Synthesis by Substituent Modification [Seite 288]
14.2.1 - 10.22.2.2.1 Substitution of Existing Substituents [Seite 288]
14.2.1.1 - 10.22.2.2.1.1 Pyrrole Ring Substituents [Seite 288]
14.2.1.1.1 - 10.22.2.2.1.1.1 Method 1: Modification of C-Nitrogen at C2 [Seite 288]
14.2.1.1.2 - 10.22.2.2.1.1.2 Method 2: Modification of N-Oxygen at N1 [Seite 289]
15 - 10.22.3 Product Subclass 3: 1,3-Dihydroazaindol-2-ones [Seite 293]
15.1 - 10.22.3.1 Synthesis by Ring-Closure Reactions [Seite 293]
15.1.1 - 10.22.3.1.1 By Annulation to a Pyridine [Seite 293]
15.1.1.1 - 10.22.3.1.1.1 By Formation of Two N-C Bonds [Seite 293]
15.1.1.1.1 - 10.22.3.1.1.1.1 With Formation of the 1-7a and 1-2 Bonds [Seite 293]
15.1.1.1.1.1 - 10.22.3.1.1.1.1.1 Method 1: From 2-(2-Chloropyridin-3-yl)acetic Acid [Seite 293]
15.1.1.2 - 10.22.3.1.1.2 By Formation of One N-C Bond and One C-C Bond [Seite 294]
15.1.1.2.1 - 10.22.3.1.1.2.1 With Formation of the 1-2 and 2-3 Bonds [Seite 294]
15.1.1.2.1.1 - 10.22.3.1.1.2.1.1 Method 1: From Lithiated ortho-Methylpyridinamines [Seite 294]
15.1.1.2.2 - 10.22.3.1.1.2.2 With Formation of the 1-2 and 3-3a Bonds [Seite 295]
15.1.1.2.2.1 - 10.22.3.1.1.2.2.1 Method 1: From a 2-Pyridylhydrazide [Seite 295]
15.1.1.3 - 10.22.3.1.1.3 By Formation of Two C-C Bonds [Seite 296]
15.1.1.3.1 - 10.22.3.1.1.3.1 With Formation of 2-3 and 3-3a Bonds [Seite 296]
15.1.1.3.1.1 - 10.22.3.1.1.3.1.1 Method 1: From N-Pivaloylpyridinamines [Seite 296]
15.1.1.4 - 10.22.3.1.1.4 By Formation of One N-C Bond [Seite 297]
15.1.1.4.1 - 10.22.3.1.1.4.1 With Formation of the 1-7a Bond [Seite 297]
15.1.1.4.1.1 - 10.22.3.1.1.4.1.1 Method 1: From 2-(2-Chloropyridin-3-yl)acetamide [Seite 297]
15.1.1.4.1.2 - 10.22.3.1.1.4.1.2 Method 2: From 2-(2-Bromopyridin-3-yl)acetonitrile [Seite 298]
15.1.1.4.1.3 - 10.22.3.1.1.4.1.3 Method 3: From 2-Hydroxy-N-morpholino-2-(3-pyridyl)acetamide [Seite 298]
15.1.1.4.2 - 10.22.3.1.1.4.2 With Formation of the 1-2 Bond [Seite 300]
15.1.1.4.2.1 - 10.22.3.1.1.4.2.1 Method 1: From a 2-(Nitropyridyl)malonate [Seite 300]
15.1.1.4.2.2 - 10.22.3.1.1.4.2.2 Method 2: From a 2-Cyano-2-(3-nitropyridyl)acetate [Seite 303]
15.1.1.4.2.3 - 10.22.3.1.1.4.2.3 Method 3: From (3-Nitropyridyl)acetonitriles [Seite 307]
15.1.1.4.2.4 - 10.22.3.1.1.4.2.4 Method 4: From (3-Nitropyridyl)acetates [Seite 308]
15.1.1.4.2.5 - 10.22.3.1.1.4.2.5 Method 5: From (2-Aminopyridin-3-yl)acetic Acid [Seite 311]
15.1.1.5 - 10.22.3.1.1.5 By Formation of One C-C Bond [Seite 312]
15.1.1.5.1 - 10.22.3.1.1.5.1 With Formation of the 3-3a Bond [Seite 312]
15.1.1.5.1.1 - 10.22.3.1.1.5.1.1 Method 1: From N-(3-Bromopyridin-2-yl)alk-2-enamides [Seite 312]
15.1.1.5.1.2 - 10.22.3.1.1.5.1.2 Method 2: From N-Pyridylpropanamides [Seite 312]
15.1.1.5.1.3 - 10.22.3.1.1.5.1.3 Method 3: From N-(Halopyridyl) Amides [Seite 314]
15.1.1.5.1.4 - 10.22.3.1.1.5.1.4 Method 4: From N-(2-Chloropyridin-3-yl)acetamides [Seite 316]
15.1.1.5.1.5 - 10.22.3.1.1.5.1.5 Method 5: From a 2-Bromo-N-pyridylacetamide [Seite 316]
15.1.1.5.1.6 - 10.22.3.1.1.5.1.6 Method 6: From a Pyridylcarbamoylmethyl Xanthate [Seite 317]
15.1.1.5.1.7 - 10.22.3.1.1.5.1.7 Method 7: From Diethyl {2-[(2-Bromopyridin-3-yl)amino]- 2-oxoethyl}phosphonate and an Aldehyde [Seite 320]
15.2 - 10.22.3.2 Synthesis by Ring Transformation [Seite 321]
15.2.1 - 10.22.3.2.1 From Other Heterocyclic Systems [Seite 321]
15.2.1.1 - 10.22.3.2.1.1 Method 1: 1H-Pyrrolopyridines by 3,3-Dibromination [Seite 321]
15.2.1.2 - 10.22.3.2.1.2 Method 2: From a 1H-Pyrrolo[2,3-b]pyridine by Enzymatic Oxidation [Seite 326]
15.2.1.3 - 10.22.3.2.1.3 Method 3: From a 1H-Pyrrolopyridine-2,3-dione [Seite 326]
15.3 - 10.22.3.3 Synthesis by Substituent Modification [Seite 330]
15.3.1 - 10.22.3.3.1 Substitution of Existing Substituents [Seite 330]
15.3.1.1 - 10.22.3.3.1.1 Pyridine Ring Substituents [Seite 330]
15.3.1.1.1 - 10.22.3.3.1.1.1 Modification of C-Halogen at C5 [Seite 330]
15.3.1.1.1.1 - 10.22.3.3.1.1.1.1 Method 1: Formation of C-Carbon [Seite 330]
15.3.1.1.2 - 10.22.3.3.1.1.2 Modification of Nitrogen at N4 [Seite 333]
15.3.1.1.2.1 - 10.22.3.3.1.1.2.1 Method 1: Formation of N-Carbon [Seite 333]
15.3.1.2 - 10.22.3.3.1.2 Pyrrole Ring Substituents [Seite 334]
15.3.1.2.1 - 10.22.3.3.1.2.1 Substitution of C-Hydrogen at C3 [Seite 334]
15.3.1.2.1.1 - 10.22.3.3.1.2.1.1 Method 1: Formation of C-Carbon (Alkylation) [Seite 334]
15.3.1.2.1.2 - 10.22.3.3.1.2.1.2 Method 2: Formation of C-Carbon (Alkenylation) [Seite 339]
16 - 10.22.4 Product Subclass 4: 1,2-Dihydroazaindol-3-ones [Seite 349]
16.1 - 10.22.4.1 Synthesis by Ring-Closure Reactions [Seite 350]
16.1.1 - 10.22.4.1.1 By Annulation to a Pyridine [Seite 350]
16.1.1.1 - 10.22.4.1.1.1 By Formation of One N-C and One C-C Bond [Seite 350]
16.1.1.1.1 - 10.22.4.1.1.1.1 With Formation of the 1-7a and 2-3 Bonds [Seite 350]
16.1.1.1.1.1 - 10.22.4.1.1.1.1.1 Method 1: From a Pyridine Ester with an ortho-Amino Group [Seite 350]
16.1.1.1.2 - 10.22.4.1.1.1.2 With Formation of the 3-3a and 1-2 Bonds [Seite 351]
16.1.1.1.2.1 - 10.22.4.1.1.1.2.1 Method 1: From 3-Iodopyridin-2-amines and 1-Methoxyallene [Seite 351]
16.1.1.2 - 10.22.4.1.1.2 By Formation of One N-C Bond [Seite 352]
16.1.1.2.1 - 10.22.4.1.1.2.1 With Formation of the 1-7a Bond [Seite 352]
16.1.1.2.1.1 - 10.22.4.1.1.2.1.1 Method 1: From (2-Chloropyridin-3-yl)(1H-pyrrol-2-yl)methanone [Seite 352]
16.1.1.3 - 10.22.4.1.1.3 By Formation of One C-C Bond [Seite 352]
16.1.1.3.1 - 10.22.4.1.1.3.1 With Formation of the 2-3 Bond [Seite 352]
16.1.1.3.1.1 - 10.22.4.1.1.3.1.1 Method 1: From an N-Pyridylglycine [Seite 352]
16.1.2 - 10.22.4.1.2 By Annulation to a Pyrrole [Seite 354]
16.1.2.1 - 10.22.4.1.2.1 By Formation of Two C-C Bonds [Seite 354]
16.1.2.1.1 - 10.22.4.1.2.1.1 With Formation of the 4-5 and 6-7 Bonds [Seite 354]
16.1.2.1.1.1 - 10.22.4.1.2.1.1.1 Method 1: From a Masked 2-Amino-4-oxo-1H-pyrrole-3-carbaldehyde [Seite 354]
16.2 - 10.22.4.2 Synthesis by Ring Transformation [Seite 355]
16.2.1 - 10.22.4.2.1 From Other Heterocyclic Systems [Seite 355]
16.2.1.1 - 10.22.4.2.1.1 Method 1: From a Tetrazolo[1,5-a]pyridine [Seite 355]
16.2.1.2 - 10.22.4.2.1.2 Method 2: From a 1H-Pyrrolo[2,3-b]pyridine-3-carbaldehyde [Seite 355]
16.3 - 10.22.4.3 Synthesis by Substituent Modification [Seite 356]
16.3.1 - 10.22.4.3.1 Substitution of Existing Substituents [Seite 356]
16.3.1.1 - 10.22.4.3.1.1 Pyrrole Ring Substituents [Seite 356]
16.3.1.1.1 - 10.22.4.3.1.1.1 Modification of C-Oxygen at C3 [Seite 356]
16.3.1.1.1.1 - 10.22.4.3.1.1.1.1 Method 1: Formation of O-Carbon [Seite 356]
16.3.1.1.2 - 10.22.4.3.1.1.2 Substitution of C-Hydrogen at C2 [Seite 357]
16.3.1.1.2.1 - 10.22.4.3.1.1.2.1 Method 1: Formation of C-Carbon [Seite 357]
16.3.1.1.3 - 10.22.4.3.1.1.3 Modification of Nitrogen at N1 [Seite 359]
16.3.1.1.3.1 - 10.22.4.3.1.1.3.1 Method 1: Formation of N-Carbon [Seite 359]
17 - 10.22.5 Product Subclass 5: 1H-Azaindole-2,3-diones [Seite 361]
17.1 - 10.22.5.1 Synthesis by Ring-Closure Reactions [Seite 362]
17.1.1 - 10.22.5.1.1 By Annulation to a Pyridine [Seite 362]
17.1.1.1 - 10.22.5.1.1.1 By Formation of One N-C Bond [Seite 362]
17.1.1.1.1 - 10.22.5.1.1.1.1 With Formation of the 1-2 Bond [Seite 362]
17.1.1.1.1.1 - 10.22.5.1.1.1.1.1 Method 1: From {4-[(tert-Butoxycarbonyl)amino]pyridin-3-yl}glyoxylate [Seite 362]
17.2 - 10.22.5.2 Synthesis by Ring Transformation [Seite 362]
17.2.1 - 10.22.5.2.1 From Other Heterocyclic Systems [Seite 362]
17.2.1.1 - 10.22.5.2.1.1 Method 1: From a 1,3-Dihydro-2H-pyrrolopyridin-2-one [Seite 362]
17.2.1.2 - 10.22.5.2.1.2 Method 2: From a Pyrrolopyridine [Seite 365]
17.3 - 10.22.5.3 Synthesis by Substituent Modification [Seite 371]
17.3.1 - 10.22.5.3.1 Substitution of Existing Substituents [Seite 371]
17.3.1.1 - 10.22.5.3.1.1 Pyridine Ring Substituents [Seite 371]
17.3.1.1.1 - 10.22.5.3.1.1.1 Substitution of C-Hydrogen at C5 [Seite 371]
17.3.1.1.1.1 - 10.22.5.3.1.1.1.1 Method 1: Giving C-Halogen [Seite 371]
17.3.1.2 - 10.22.5.3.1.2 Pyrrole Ring Substituents [Seite 372]
17.3.1.2.1 - 10.22.5.3.1.2.1 Substitution of N-Hydrogen at N1 [Seite 372]
17.3.1.2.1.1 - 10.22.5.3.1.2.1.1 Method 1: Formation of N-Carbon [Seite 372]
18 - 10.22.6 Product Subclass 6: Azaindol-2- and Azaindol-3-amines [Seite 375]
18.1 - 10.22.6.1 Synthesis by Ring-Closure Reactions [Seite 375]
18.1.1 - 10.22.6.1.1 By Annulation to a Pyridine [Seite 375]
18.1.1.1 - 10.22.6.1.1.1 By Formation of One N-C and One C-C Bond [Seite 375]
18.1.1.1.1 - 10.22.6.1.1.1.1 With Formation of the 1-2 and 3-3a Bonds [Seite 375]
18.1.1.1.1.1 - 10.22.6.1.1.1.1.1 Method 1: From a 2-Halo-3-nitropyridine and a 2-Cyanoacetamide [Seite 375]
18.1.1.1.2 - 10.22.6.1.1.1.2 With Formation of the 1-2 and 2-3 Bonds [Seite 376]
18.1.1.1.2.1 - 10.22.6.1.1.1.2.1 Method 1: From Aminopyridine-3-carbonitriles [Seite 376]
18.1.1.2 - 10.22.6.1.1.2 By Formation of One N-C Bond [Seite 377]
18.1.1.2.1 - 10.22.6.1.1.2.1 With Formation of the 1-2 Bond [Seite 377]
18.1.1.2.1.1 - 10.22.6.1.1.2.1.1 Method 1: From an Ethyl 2-Cyano-2-(3-nitropyridyl)acetate [Seite 377]
18.1.1.2.1.2 - 10.22.6.1.1.2.1.2 Method 2: From a 2-[3-(Alkylamino)pyridin-2-yl]acetonitrile [Seite 378]
18.1.1.2.1.3 - 10.22.6.1.1.2.1.3 Method 3: From 3-Ethynyl-N-methylpyridin-2-amine [Seite 379]
18.1.1.3 - 10.22.6.1.1.3 By Formation of One C-C Bond [Seite 380]
18.1.1.3.1 - 10.22.6.1.1.3.1 With Formation of the 2-3 Bond [Seite 380]
18.1.1.3.1.1 - 10.22.6.1.1.3.1.1 Method 1: From Substituted 2-Aminopyridine-3-carbonitriles [Seite 380]
18.2 - 10.22.6.2 Synthesis by Ring Transformation [Seite 381]
18.2.1 - 10.22.6.2.1 From Other Heterocyclic Systems [Seite 381]
18.2.1.1 - 10.22.6.2.1.1 Method 1: From a Pyrrolopyridine [Seite 381]
18.2.1.1.1 - 10.22.6.2.1.1.1 Variation 1: From a Halopyrrolopyridine [Seite 381]
18.2.1.1.2 - 10.22.6.2.1.1.2 Variation 2: Via Nitrosation [Seite 382]
18.2.1.1.3 - 10.22.6.2.1.1.3 Variation 3: Via Diazonium Coupling [Seite 384]
18.2.1.1.4 - 10.22.6.2.1.1.4 Variation 4: By Reduction of Nitro Groups [Seite 385]
18.2.1.1.5 - 10.22.6.2.1.1.5 Variation 5: Via Azidation [Seite 388]
18.2.1.2 - 10.22.6.2.1.2 Method 2: From a 1,2,3-Dithiazole [Seite 390]
19 - 21.17 Synthesis of Amides (Including Peptides) in Continuous-Flow Reactors [Seite 393]
19.1 - 21.17.1 Microreactors: A Faster Tool for Synthesis Laboratories [Seite 394]
19.2 - 21.17.2 Amide Formation in Microflow Reactors: Exploring Different Possibilities [Seite 395]
19.2.1 - 21.17.2.1 Peptide Synthesis [Seite 395]
19.2.1.1 - 21.17.2.1.1 Method 1: Synthesis of Di- and Tripeptides in Solution [Seite 395]
19.2.1.2 - 21.17.2.1.2 Method 2: Synthesis of Di- and Tripeptides Using Immobilized Reagents [Seite 398]
19.2.1.3 - 21.17.2.1.3 Method 3: ?-Peptide Synthesis Using Fluorine-Activated Amino Acids [Seite 400]
19.2.1.4 - 21.17.2.1.4 Method 4: Peptide Synthesis Using Triphosgene as the Activating Agent [Seite 402]
19.2.1.5 - 21.17.2.1.5 Method 5: Cyclization of Peptides Driven by Microfluidics [Seite 405]
19.2.1.6 - 21.17.2.1.6 Method 6: Analysis of Racemization During Peptide Formation [Seite 407]
19.2.2 - 21.17.2.2 Synthesis of Drugs [Seite 407]
19.2.3 - 21.17.2.3 Carbonylation Reactions [Seite 409]
19.2.4 - 21.17.2.4 Lactam Synthesis [Seite 411]
19.2.5 - 21.17.2.5 Dendrimer Synthesis [Seite 411]
19.2.6 - 21.17.2.6 Miscellaneous Syntheses of Amides [Seite 413]
20 - 27.19.5 Azomethine Imines (Update 2017) [Seite 417]
20.1 - 27.19.5.1 Acyclic Azomethine Imines [Seite 417]
20.1.1 - 27.19.5.1.1 Synthesis and Applications of Acyclic Azomethine Imines [Seite 417]
20.1.1.1 - 27.19.5.1.1.1 Method 1: In Situ Generation from Hydrazones Followed by [3 +2] Cycloaddition [Seite 418]
20.1.1.1.1 - 27.19.5.1.1.1.1 Variation 1: In Situ Generation from Hydrazones with Boron Trifluoride- Diethyl Ether Complex and Subsequent Intramolecular [3+ 2] Cycloaddition [Seite 418]
20.1.1.1.2 - 27.19.5.1.1.1.2 Variation 2: In Situ Generation from Hydrazones with Iodosylbenzene and Subsequent [3 + 2] Cycloaddition with Imines [Seite 420]
20.1.1.2 - 27.19.5.1.1.2 Method 2: In Situ Generation from Aldehydes and Hydrazides [Seite 421]
20.1.1.2.1 - 27.19.5.1.1.2.1 Variation 1: In Situ Generation from Aldehydes and Hydrazides and Reaction with Nucleophiles [Seite 421]
20.1.1.2.2 - 27.19.5.1.1.2.2 Variation 2: In Situ Generation from Aldehydes and Hydrazides and Intermolecular [3 + 2] Cycloaddition with Alkynes [Seite 423]
20.2 - 27.19.5.2 Azomethine Imines with C-N Incorporated in a Ring [Seite 424]
20.2.1 - 27.19.5.2.1 Synthesis and Applications of Azomethine Imines with C-N Incorporated in a Ring [Seite 424]
20.2.1.1 - 27.19.5.2.1.1 Method 1: Synthesis of Cyclic Azomethine Imines from 2-(2-Bromoethyl)benzaldehydes and Benzoylhydrazine [Seite 424]
20.2.1.2 - 27.19.5.2.1.2 Method 2: Synthesis of Cyclic Azomethine Imines by Intramolecular Cyclization [Seite 426]
20.2.1.2.1 - 27.19.5.2.1.2.1 Variation 1: Synthesis of Cyclic Azomethine Imines from Alkynyl Hydrazides [Seite 426]
20.2.1.2.2 - 27.19.5.2.1.2.2 Variation 2: Synthesis of Cyclic Azomethine Imines from ?,?-Unsaturated N-Trichloroacetyl and N-Trifluoroacetyl Hydrazones [Seite 427]
20.2.1.3 - 27.19.5.2.1.3 Method 3: Synthesis of Cyclic Azomethine Imines from Pyridine Derivatives [Seite 428]
20.2.1.3.1 - 27.19.5.2.1.3.1 Variation 1: Synthesis of N-Benzoyl- and N-Tosyliminopyridinium Ylides from Pyridines by Amination and Acylation [Seite 428]
20.2.1.3.2 - 27.19.5.2.1.3.2 Variation 2: Synthesis of N-Tosyliminopyridinium Ylides from Pyridines by Metal-Catalyzed Imination with [N-(4-Toluenesulfonyl)imino]phenyliodinane [Seite 430]
20.2.1.4 - 27.19.5.2.1.4 Method 4: Metal-Catalyzed Synthesis of Cyclic Azomethine Imines from N?-(2-Alkynylbenzylidene) Hydrazides [Seite 431]
20.3 - 27.19.5.3 Azomethine Imines with N-N Incorporated in a Ring [Seite 433]
20.3.1 - 27.19.5.3.1 Synthesis and Applications of Azomethine Imines with N-N Incorporated in a Ring [Seite 433]
20.3.1.1 - 27.19.5.3.1.1 Method 1: Synthesis from Hydrazones and Alkenes [Seite 433]
21 - 35.1.5.1.12 Synthesis of 1-Chloro-n-Heteroatom-Functionalized Alkanes (n ?2) by Addition across C=C Bonds (Update 2017) [Seite 439]
21.1 - 35.1.5.1.12.1 Method 1: Dichlorination of Alkenes [Seite 439]
21.1.1 - 35.1.5.1.12.1.1 Variation 1: Using Manganese(III)/Hydrochloric Acid as the Chlorine Source [Seite 439]
21.1.2 - 35.1.5.1.12.1.2 Variation 2: Using an Iodine(III) Reagent as the Chlorine Source [Seite 441]
21.1.3 - 35.1.5.1.12.1.3 Variation 3: Using Organic Chlorides as the Chlorine Source [Seite 442]
21.1.4 - 35.1.5.1.12.1.4 Variation 4: Using Alkali Metal Chlorides as the Chlorine Source [Seite 445]
21.1.5 - 35.1.5.1.12.1.5 Variation 5: Using N-Chlorosuccinimide as the Chlorine Source [Seite 447]
21.1.6 - 35.1.5.1.12.1.6 Variation 6: Using a Carbene-Palladium(IV) Chloride Complex as the Chlorine Source [Seite 448]
21.1.7 - 35.1.5.1.12.1.7 Variation 7: Organocatalyzed Dichlorination of Alkenes [Seite 449]
21.2 - 35.1.5.1.12.2 Method 2: Aminochlorination of Alkenes [Seite 451]
21.2.1 - 35.1.5.1.12.2.1 Variation 1: Carbon Dioxide Promoted Aminochlorination of Alkenes Using Chloramine-Tas the Source of Chlorine and Nitrogen [Seite 452]
21.2.2 - 35.1.5.1.12.2.2 Variation 2: Transition-Metal-Catalyzed Aminochlorination of Alkenes [Seite 453]
21.2.3 - 35.1.5.1.12.2.3 Variation 3: Asymmetric Catalytic Aminochlorination of ?,?-Unsaturated ?-Oxo Esters [Seite 455]
21.2.4 - 35.1.5.1.12.2.4 Variation 4: Selenium-Catalyzed Chloroamidation of Alkenes [Seite 458]
21.2.5 - 35.1.5.1.12.2.5 Variation 5: Photocatalytic Aminochlorination of Alkenes [Seite 459]
21.3 - 35.1.5.1.12.3 Method 3: Halochlorination of Alkenes [Seite 460]
21.3.1 - 35.1.5.1.12.3.1 Variation 1: Iodochlorination of Styrene Using Tetramethylammonium Dichloroiodate [Seite 460]
21.3.2 - 35.1.5.1.12.3.2 Variation 2: Copper-Catalyzed Bromochlorination of Styrene Using Tetrabutylammonium Dichlorobromate [Seite 461]
21.3.3 - 35.1.5.1.12.3.3 Variation 3: Catalytic Enantioselective Bromochlorination of Allylic Alcohols [Seite 461]
21.4 - 35.1.5.1.12.4 Method 4: Oxychlorination of Alkenes [Seite 463]
21.4.1 - 35.1.5.1.12.4.1 Variation 1: Thiourea Catalyzed Methoxychlorination of Alkenes [Seite 463]
21.4.2 - 35.1.5.1.12.4.2 Variation 2: Iodine(III)-Mediated Methoxychlorination of Alkenes [Seite 464]
21.4.3 - 35.1.5.1.12.4.3 Variation 3: (Diacetoxyiodo)benzene-Mediated Ethoxychlorination of Enamides [Seite 465]
21.4.4 - 35.1.5.1.12.4.4 Variation 4: Organocatalytic Enantioselective Chlorocyclization of Unsaturated Amides [Seite 466]
21.5 - 35.1.5.1.12.5 Method 5: Chloroselanylation of Alkenes [Seite 468]
21.5.1 - 35.1.5.1.12.5.1 Variation 1: ?-Chloroselanylation of Alkenes with N,NDiethylbenzeneselenenamide in the Presence of Phosphoryl Chloride or Thionyl Chloride [Seite 468]
21.5.2 - 35.1.5.1.12.5.2 Variation 2: Chloroselanylation of Alkenes with Phenylselenenyl Chloride [Seite 469]
21.6 - 35.1.5.1.12.6 Method 6: Sulfanylchlorination of Alkenes [Seite 470]
21.7 - 35.1.5.1.12.7 Method 7: Trihalomethylchlorination of Alkenes [Seite 471]
21.7.1 - 35.1.5.1.12.7.1 Variation 1: Trichloromethylchlorination of Alkenes with Trichloromethanesulfonyl Chloride [Seite 471]
21.7.2 - 35.1.5.1.12.7.2 Variation 2: Trichloromethylchlorination of Alkenes in Subcritical Carbon Tetrachloride [Seite 472]
21.7.3 - 35.1.5.1.12.7.3 Variation 3: Copper/Ruthenium-Catalyzed Trifluoromethylchlorination of Alkenes [Seite 473]
21.8 - 35.1.5.1.12.8 Method 8: Azidochlorination of Alkenes [Seite 474]
21.8.1 - 35.1.5.1.12.8.1 Variation 1: Azidochlorination of Alkenes with Sodium Azide in the Presence of Sodium Hypochlorite and Acetic Acid [Seite 474]
21.9 - 35.1.5.1.12.9 Method 9: Chlorodiacetonylation of Alkenes [Seite 476]
21.9.1 - 35.1.5.1.12.9.1 Variation 1: Chlorodiacetonylation of Cycloalkenes with Acetylacetone and Manganese(III) Acetate in the Presence of Hydrochloric Acid [Seite 476]
22 - 35.2.1.5.7 Synthesis of Bromoalkanes by Substitution of Oxygen Functionalities (Update 2017) [Seite 479]
22.1 - 35.2.1.5.7.1 Method 1: Substitution of Alcoholic Hydroxy Groups [Seite 479]
22.1.1 - 35.2.1.5.7.1.1 Variation 1: Reaction of Alcohols with Oxalyl Chloride and Lithium Bromide under Catalysis by Triphenylphosphine Oxide [Seite 479]
22.1.2 - 35.2.1.5.7.1.2 Variation 2: Reaction of Alcohols with Diethyl Bromomalonate and Diphenylsilane under Catalysis of 5-Phenyldibenzophosphole [Seite 480]
22.1.3 - 35.2.1.5.7.1.3 Variation 3: Reaction of Primary Alcohols with 7,7-Dichlorocyclohepta- 1,3,5-triene and Tetrabutylammonium Bromide [Seite 481]
22.1.4 - 35.2.1.5.7.1.4 Variation 4: Reaction of Alcohols with 2,2-Dibromo- 1,3-dicyclohexylimidazolidine-4,5-dione [Seite 482]
22.1.5 - 35.2.1.5.7.1.5 Variation 5: Reaction of Alcohols with tert-Butyl Bromide in the Ionic Liquid 3-Methyl-1-pentylimidazolium Bromide [Seite 483]
22.2 - 35.2.1.5.7.2 Method 2: Cleavage of Silyl- and Tetrahydropyranyl-Protected Alcohols [Seite 484]
22.2.1 - 35.2.1.5.7.2.1 Variation 1: Reaction of Tetrahydropyranyl Ethers with Dibromotriphenylphosphorane [Seite 484]
22.2.2 - 35.2.1.5.7.2.2 Variation 2: Reaction of Tetrahydropyranyl and Silyl Ethers with N-Bromosaccharin-Triphenylphosphine [Seite 486]
22.2.3 - 35.2.1.5.7.2.3 Variation 3: Reaction of Tetrahydropyranyl and Silyl Ethers in Ionic Liquids [Seite 487]
22.3 - 35.2.1.5.7.3 Method 3: Substitution of Sulfonyloxy Groups [Seite 488]
22.3.1 - 35.2.1.5.7.3.1 Variation 1: Reaction of Arene- or Methanesulfonates with Lithium Bromide in Tetrahydrofuran [Seite 488]
22.3.2 - 35.2.1.5.7.3.2 Variation 2: Reaction of Methanesulfonates with Magnesium Bromide- Diethyl Ether Complex [Seite 489]
22.3.3 - 35.2.1.5.7.3.3 Variation 3: Reaction of Arene- or Methanesulfonates with the Ionic Liquid 1-Butyl-3-methylimidazolium Bromide [Seite 490]
23 - 35.2.2.2 Propargylic Bromides (Update 2017) [Seite 493]
23.1 - 35.2.2.2.1 Method 1: Synthesis by Heteroatom Substitution: Substitution of Hydroxy or Tetrahydropyranyl Ether Groups [Seite 493]
23.1.1 - 35.2.2.2.1.1 Variation 1: Reaction of Propargylic Alcohols with Phosphorus Tribromide in Perfluorohexane [Seite 494]
24 - 35.2.3.3.3 Synthesis of Benzylic Bromides by Substitution of ?-Bonded Heteroatoms (Update 2017) [Seite 497]
24.1 - 35.2.3.3.3.1 Method 1: Substitution of Oxygen Functionalities [Seite 497]
24.1.1 - 35.2.3.3.3.1.1 Variation 1: Reaction of (Hydroxymethyl)phenols with 2,4,6-Trichloro- 1,3,5-triazine and Sodium Bromide [Seite 500]
24.1.2 - 35.2.3.3.3.1.2 Variation 2: Reaction of Benzylic Alcohols with Poly(vinylpyrrolidin- 2-one)-Bromine Complex and Hexamethyldisilane [Seite 501]
24.1.3 - 35.2.3.3.3.1.3 Variation 3: Reaction of Benzylic Alcohols with Monolithic Triphenylphosphine Reagent and Carbon Tetrabromide [Seite 502]
25 - 35.2.4.2.3 Synthesis of Allylic Bromides by Substitution of ?-Bonded Heteroatoms (Update 2017) [Seite 505]
25.1 - 35.2.4.2.3.1 Method 1: Substitution of Other Halogens [Seite 505]
25.1.1 - 35.2.4.2.3.1.1 Variation 1: Reaction of Allylic Chlorides with 1,2-Dibromoethane under Rhodium Catalysis [Seite 505]
25.2 - 35.2.4.2.3.2 Method 2: Substitution of Hydroxy Groups [Seite 505]
26 - Author Index [Seite 509]
27 - Abbreviations [Seite 527]
Abstracts
3.6.16 Gold-Catalyzed Cycloaddition Reactions
D. Qian and J. Zhang
Since about 2000, a "gold rush" has resulted in the development of numerous gold-catalyzed cycloaddition reactions. Such cycloadditions have now become a powerful and privileged method for the construction of carbo- and heterocycles, in particular those complex polycyclic structures featured in diverse natural products. This chapter is organized according to the key reactive gold intermediate that formally participates in the cycloaddition.
Keywords: gold · cycloaddition · carbocycles · heterocycles · carbophilic activation · alkynes · 1,n-dipolar · allenes · alkenylgold · gold · carbenes · benzopyryliums · furylgold species · cycloisomerization · acyloxy migration · alkyne oxidation · nitrene transfer · carbene transfer · diazo decomposition · s-Lewis acid · enantioselective
4.4.7 Silylboron Reagents
L. B. Delvos and M. Oestreich
This update describes the development of silylboron chemistry since the initial summary in Science of Synthesis by Hemeon and Singer in 2002. In the first part, an overview of the methods to prepare silylboron reagents by nucleophilic substitution, Si─H bond activation, or reductive coupling is provided, and possibilities for further functionalization are presented. The second section comprehensively covers all aspects of the synthetic applications of silylboron compounds, ranging from transition-metal catalysis to transmetalation reactions and Si─B bond activation with Lewis bases. The presented methodologies include silaboration and silylation of unsaturated carbon-carbon bonds, addition and substitution reactions with nucleophilic silicon reagents, silaboration of strained rings under C─C bond cleavage, and Si─B insertion reactions of carbenoids and related compounds.
Keywords: silicon · boron · interelement compounds · main-group chemistry · silaboration · silylation · borylation · difunctionalization · transition-metal catalysis · asymmetric catalysis · oxidative addition · transmetalation · carbenoid insertion · 1,2-addition · 1,4-addition · allylic substitution · propargylic substitution · aromatic substitution
4.4.11 Silyllithium and Related Silyl Alkali Metal Reagents
C. Kleeberg
This chapter is a revision of the earlier Science of Synthesis contribution describing methods for the synthesis of silyllithium reagents and related compounds of the heavier alkali metals. Various synthetic routes to silyl alkali metal reagents are presented, employing different reaction types including reductive or nucleophilic cleavage of disilanes, reductive metalation of silyl halides, and cleavage of Si─H bonds.
Keywords: silyllithium reagents · lithium compounds · alkali metal compounds · sodium compounds · potassium compounds · reductive cleavage · cleavage reactions · silicon compounds · silanes
4.4.19.4 Silyl Sulfides and Selenides
A. Baker and T. Wirth
This chapter is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of silyl sulfides and silyl selenides. Various efficient synthetic routes to these compounds are shown. The use of disilyl sulfides and disilyl selenides as versatile reagents in synthesis is highlighted.
Keywords: silyl sulfides · silyl selenides · sulfur · silanes
4.4.24.3 Silyl Cyanides
Y. Nishimoto, M. Yasuda, and A. Baba
This chapter is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of silyl cyanides. It focuses on the literature published in the period 1997-2015.
Keywords: silanes · silenes · silicon compounds · cyanides · silyl halides
4.4.47 Silanols
A. M. Hardman-Baldwin and A. E. Mattson
This chapter covers synthetic approaches toward and selected applications of organosilanols. The focus is on the literature published in the period 2000-2015.
Keywords: silanols · silanediols · silanes · metal catalysis · organocatalysis · directing groups
10.22.2 Azaindol-1-ols
J.-Y. Mérour and B. Joseph
This chapter presents the little-known azaindol-1-ol family. Methods for the preparation as well as the reactivity of each isomer are covered.
Keywords: azaindol-1-ols · cyclization · reduction · oxidation · O-alkylation
10.22.3 1,3-Dihydroazaindol-2-ones
J.-Y. Mérour and B. Joseph
This chapter reviews the synthesis and reactivity of 1,3-dihydroazaindol-2-ones described in the literature until mid-2014. Synthetic methods and substituent modifications are reviewed for each isomer.
Keywords: 1,3-dihydroazaindol-2-ones · azaoxindoles · cyclization · reduction · rearrangement · radical cyclization · C3-alkylation · C3-aldolization
10.22.4 1,2-Dihydroazaindol-3-ones
J.-Y. Mérour and B. Joseph
This chapter reviews the synthesis and reactivity of 1,2-dihydroazaindol-3-ones (azaindoxyls) and related 1,2-dihydroazaindol-3-yl acetates. Synthetic preparations are reviewed for all isomers except for 1,2-dihydro-3H-pyrrolo[2,3-c]pyridin-3-ones.
Keywords: 1,2-dihydroazaindol-3-ones · azaindoxyls · 1,2-dihydroazaindol-3-yl acetates · cyclization · C2-aldolization
10.22.5 1H-Azaindole-2,3-diones
J.-Y. Mérour and B. Joseph
This chapter reviews the synthesis and reactivity of 1H-azaindole-2,3-diones (azaisatins). It focuses on the literature published until mid-2014. Synthetic preparations are reviewed for 1H-pyrrolo[3,2-b]pyridine-2,3-diones, 1H-pyrrolo[3,2-c]pyridine-2,3-diones, and 1H-pyrrolo[2,3-b]pyridine-2,3-diones.
Keywords: 1H-azaindole-2,3-diones · azaisatins · cyclization · bromination · oxidation · 1H-pyrrolo[3,2-b]pyridine-2,3-diones · 1H-pyrrolo[3,2-c]pyridine-2,3-diones · 1H-pyrrolo[2,3-b]pyridine-2,3-diones
10.22.6 Azaindol-2- and Azaindol-3-amines
J.-Y. Mérour and B. Joseph
This chapter presents methods for the preparation of azaindol-2-amines and azaindol-3-amines published in the literature until mid-2014. Synthetic methods are described for each isomer.
Keywords: azaindol-2-amines · azaindol-3-amines · cyclization · nitrosation · reduction
21.17 Synthesis of Amides (Including Peptides) in Continuous-Flow Reactors
S. Ramesh, P. Cherkupally, T. Govender, H. G. Kruger, B. G. de la Torre, and F. Albericio
Microreactors are powerful tools which present excellent mass- and heat-transfer performance properties for various kinds of chemical reaction. In this chapter, we present a brief introduction to microreactors, followed by an overview of the different microfluidic methods available for the synthesis of amides (including peptides). The range of peptides obtained via microreactor use includes di- to pentapeptides and also some cyclic analogues. Other continuous-flow reactions involving amide-bond formation are also illustrated, including examples of carbonylation, dendrimer preparation, and drug synthesis. The noteworthy features of these microfluidic reactions include shorter reaction times, high yields, and significantly less wastage. They are thus a step toward environmentally friendly, green reactions.
Keywords: amides · continuous-flow reactions · flow chemistry · green chemistry · microfluidics · microreactors · peptides
27.19.5 Azomethine Imines
I. Atodiresei and M. Rueping
This chapter is an update to the earlier Science of Synthesis contribution describing methods for the synthesis of azomethine imines and focuses on the literature published in the period 2003-2014. As azomethine imines are commonly generated in situ, and subsequently trapped with suitable reaction partners, their applications in synthesis are also presented herein.
Keywords: azomethine imines · cycloaddition reactions · dipolar cycloaddition · hydrazones · intramolecular cycloaddition
35.1.5.1.12 Synthesis of 1-Chloro-n-Heteroatom-Functionalized Alkanes by Addition across C═C Bonds
T. Wirth and F. V. Singh
Chlorination of alkenes is an important synthetic process in organic chemistry. Several approaches for the chlorination of alkenes have been developed, including dichlorination, aminochlorination, halochlorination, oxychlorination, sulfanylchlorination, trihalomethylchlorination, and...