This volume consists of expository and research articles that highlight the various Lie algebraic methods used in mathematical research today. Key topics discussed include spherical varieties, Littelmann Paths and Kac-Moody Lie algebras, modular representations, primitive ideals, representation theory of Artin algebras and quivers, Kac-Moody superalgebras, categories of Harish-Chandra modules, cohomological methods, and cluster algebras.
Reihe
Sprache
Verlagsort
Verlagsgruppe
Illustrationen
4 s/w Abbildungen
XV, 227 p. 4 illus.
Dateigröße
ISBN-13
978-0-8176-8274-3 (9780817682743)
DOI
10.1007/978-0-8176-8274-3
Schweitzer Klassifikation
Preface.- Part I: The Courses.- 1 Spherical Varieties.- 2 Consequences of the Littelmann Path Model for the Structure of the Kashiwara
B
(8) Crystal.- 3 Structure and Representation Theory of Kac-Moody Superalgebras.- 4 Categories of Harish-Chandra Modules.- 5 Generalized Harish-Chandra Modules.- Part II: The Papers.- 6 B-Orbits of 2-Nilpotent Matrices.- 7 The Weyl Denominator Identity for Finite-Dimensional Lie Superalgebras.- 8 Hopf Algebras and Frobenius Algebras in Finite Tensor Categories.- 9 Mutation Classes of 3 x 3 Generalized Cartan Matrices.- 10 Contractions and Polynomial Lie Algebras.