Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
List of Contributors xi
Foreword xiii
Preface xvii
1 The Unique Nature of Glass 1Alexis G. Clare
1.1 What is Glass? 1
1.2 Making Glass 5
1.3 Homogeneity and Phase Separation 8
1.4 Forming 9
1.5 Glasses that are not ''Melted'' 10
1.6 Exotic Glass 11
1.7 Summary 11
Further Reading 12
2 Melt-Derived Bioactive Glass 13Matthew D. O'Donnell
2.1 Bioglass 13
2.1.1 Introduction to Bioglass 13
2.1.2 The Materials Properties of Bioglass 15
2.1.3 Mechanism of Bioactivity and Effect of Glass Composition 15
2.2 Network Connectivity and Bioactivity 18
2.3 Alternative Bioactive Glass Compositions 19
2.4 In Vitro Studies 22
2.5 In Vivo Studies and Commercial Products 22
2.5.1 Animal Studies 22
2.5.2 Human Clinical Studies and Commercial Products 24
References 26
3 Sol-Gel Derived Glasses for Medicine 29Julian R. Jones
3.1 Introduction 29
3.2 Why Use the Sol-Gel Process? 30
3.3 Sol-Gel Process Principles 31
3.4 Steps in a Typical Sol-Gel Process 32
3.4.1 Stage 1: Mixing 33
3.4.2 Stage 2: Casting 34
3.4.3 Stage 3: Gelation 34
3.4.4 Stage 4: Ageing 34
3.4.5 Stage 5: Drying 35
3.4.6 Stage 6: Stabilisation 35
3.4.7 Stage 7: Densification 35
3.5 Evolution of Nanoporosity 36
3.6 Making Sol-Gel Monoliths 37
3.7 Making Particles 38
3.8 Sol-Gel Derived Bioactive Glasses 40
3.9 Summary 42
References 43
4 Phosphate Glasses 45Delia S. Brauer
4.1 Introduction 45
4.2 Making Phosphate Glasses 46
4.3 Phosphate Glass Structure 46
4.4 Temperature Behaviour and Crystallisation 50
4.5 Phosphate Glass Dissolution 56
4.6 Cell Compatibility of Glasses 58
4.7 Phosphate Glass Fibres and Composites 60
4.8 Applications 62
4.9 Summary 63
References 63
5 The Structure of Bioactive Glasses and Their Surfaces 65Alastair N. Cormack
5.1 Structure of Glasses 65
5.2 Structure of Bioactive Glasses 68
5.3 Computer Modeling (Theoretical Simulation) of Bioactive Glasses 69
5.4 Glass Surfaces 72
5.5 Summary 74
References 74
6 Bioactive Borate Glasses 75Steven B. Jung
6.1 Introduction 75
6.2 What Differentiates a Bioactive Borate Glass from Other Bioactive Glasses? 76
6.3 Evaluating Reactive Materials (In Vitro Versus In Vivo Testing) 79
6.4 Multifunctional Bioactive Borate Glasses 81
6.5 Applications of Bioactive Borate Glasses in Orthopedics and Dental Regeneration 84
6.6 Soft Tissue Wound Healing 86
6.7 Tissue/Vessel Guidance 90
6.8 Drug Delivery 91
6.9 Commercial Product Design 92
6.10 Summary 94
References 94
7 Glass-Ceramics 97Wolfram Höland
7.1 Glass-Ceramics and Their Uses 97
7.2 Methods Used for the Controlled Crystallization of Glasses 99
7.3 A Glass-Ceramic that Hardly Expands When Heated 101
7.4 High-Strength, Moldable Glass-Ceramics for Dental Restoration 102
7.5 Glass-Ceramics that are Moldable and Machinable 104
7.6 Outlook 104
References 105
8 Bioactive Glass and Glass-Ceramic Coatings 107Enrica Verné
8.1 Introduction 107
8.2 Enameling 108
8.3 Glazing 112
8.4 Plasma Spraying 115
8.5 Radiofrequency Magnetron Sputtering Deposition 117
8.6 Pulsed Laser Deposition 117
8.7 Summary 118
References 118
9 Composites Containing Bioactive Glass 121Aldo R. Boccaccini, Julian R. Jones, and Qi-Zhi Chen
9.1 Introduction 121
9.2 Biodegradable Polymers 125
9.2.1 Natural Polymers 125
9.2.2 Synthetic Polymers 126
9.3 Composite Scaffolds Containing Bioactive Glass 129
9.4 Processing Technologies for Porous Bioactive Composites 131
9.4.1 Thermally Induced Phase Separation 133
9.4.2 Solid Freeform Fabrication/Rapid Prototyping 134
9.4.3 Other Processing Routes 136
9.5 Case Study: the PDLLA-Bioglass Composite Scaffold System 136
9.6 Final Remarks 137
References 138
10 Inorganic-Organic Sol-Gel Hybrids 139Yuki Shirosaki, Akiyoshi Osaka, Kanji Tsuru, and Satoshi Hayakawa
10.1 Introduction 139
10.2 Hybrids in Medicine and Why They Should Be Silica-Based 140
10.3 Self-Assembled Hybrid Films and Layers of Grafted Silanes 143
10.4 Sol-Gel Hybrids 144
10.5 Ormosils 146
10.6 Polymer Choice and Property Control in Hybrids 149
10.6.1 Silica/Gelatin 151
10.7 Maintaining Bioactivity in Sol-Gel Hybrids 152
10.7.1 Calcium Incorporation in Sol-Gel Hybrids 153
10.7.2 Calcium-Containing Ormosils 154
10.7.3 Ormotites 154
10.7.4 Hybrids from Vinylsilanes or Other Bifunctional Silanes 155
10.8 Summary and Outlook 156
Further Reading 156
11 Dental Applications of Glasses 159Leena Hupa and Antti Yli-Urpo
11.1 Introduction 159
11.2 Structure of the Human Tooth 160
11.3 Glass Bioactivity and Teeth 161
11.4 Bioactive Glass in Dental Bone Regeneration 164
11.5 Treatment of Hypersensitive Teeth 166
11.6 Bioactive Glass Coating on Metal Implants 167
11.7 Antimicrobial Properties of Bioactive Glasses 170
11.8 Bioactive Glasses in Polymer Composites 171
11.9 Bioactive Glasses in Glass Ionomer Cements 172
11.10 Summary 173
References 173
12 Bioactive Glass as Synthetic Bone Grafts and Scaffolds for Tissue Engineering 177Julian R. Jones
12.1 Introduction 177
12.2 Synthetic Bone Grafts and Regenerative Medicine 179
12.3 Design Criteria for an Ideal Synthetic Bone Graft 181
12.4 Bioglass and the Complication of Crystallisation During Sintering 182
12.5 Making Porous Glasses 183
12.5.1 Space Holder Method 183
12.5.2 Polymer Foam Replication 185
12.5.3 Direct Foaming 187
12.5.4 Gel-Cast Foaming 187
12.5.5 Sol-Gel Foaming Process 190
12.5.6 Solid Freeform Fabrication 193
12.5.7 Summary of Bioactive Glass Scaffold Processing 194
12.6 The Future: Porous Hybrids 194
12.7 Bioactive Glasses and Tissue Engineering 198
12.8 Regulatory Issues 199
12.9 Summary 200
Further Reading 200
13 Glasses for Radiotherapy 203Delbert E. Day
13.1 Introduction 203
13.2 Glass Design and Synthesis 206
13.3 Non-Degradable or Bio-inert Glasses: Rare Earth Aluminosilicate Glasses 206
13.3.1 Preparation 207
13.3.2 Properties 208
13.4 Biodegradable Glasses: Rare Earth Borate/ Borosilicate Glasses 209
13.5 Design of Radioactive Glass Microspheres for In Vivo Applications 211
13.5.1 Glass Particle Shape 211
13.5.2 Useful Radioisotopes 212
13.5.3 Radiation Dose 212
13.5.4 Tumor Response and Tailoring of Glass Composition 213
13.6 Treatment of Liver Cancer: Hepatocellular Carcinoma 215
13.7 Treatment of Kidney Cancer: Renal Cell Carcinoma 220
13.8 Treatment of Rheumatoid Arthritis: Radiation Synovectomy 221
13.9 Summary 225
References 226
Index 229
Dateiformat: PDFKopierschutz: Adobe-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat PDF zeigt auf jeder Hardware eine Buchseite stets identisch an. Daher ist eine PDF auch für ein komplexes Layout geeignet, wie es bei Lehr- und Fachbüchern verwendet wird (Bilder, Tabellen, Spalten, Fußnoten). Bei kleinen Displays von E-Readern oder Smartphones sind PDF leider eher nervig, weil zu viel Scrollen notwendig ist. Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.
Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!
Weitere Informationen finden Sie in unserer E-Book Hilfe.