1 - NMR Data Interpretation Explained: Understanding 1D and 2D NMR Spectra of Organic Compounds and Natural Products [Seite 1]
2 - Contents [Seite 7]
3 - Examples [Seite 13]
4 - Preface [Seite 15]
5 - Acknowledgments [Seite 17]
6 - About the Companion Website [Seite 19]
7 - Chapter 1: Spectroscopy and the Proton NMR Experiment [Seite 21]
7.1 - 1 What is the Structure of a Molecule? [Seite 21]
7.2 - 2 Mass Spectrometry [Seite 23]
7.2.1 - 2.1 Ionization Methods and Molecular Ions [Seite 24]
7.2.1.1 - 2.1.1 Electron Impact (EI) [Seite 24]
7.2.1.2 - 2.1.2 Soft Ionization [Seite 25]
7.2.2 - 2.2 High-Resolution Mass Spectrometry and Exact Mass [Seite 25]
7.2.3 - 2.3 Isotope Patterns and the Halogens Br and Cl [Seite 27]
7.3 - 3 Infrared (IR) Spectroscopy [Seite 29]
7.4 - 4 Ultraviolet (UV) and Visible Spectroscopy [Seite 30]
7.5 - 5 A Highly Simplified View of the NMR Experiment [Seite 33]
8 - Chapter 2: Chemical Shifts and Splitting Patterns [Seite 37]
8.1 - 1 Chemical Shifts in the Proton Spectrum [Seite 37]
8.2 - 2 Splitting: The Effect of One Neighbor: A Doublet [Seite 41]
8.3 - 3 Splitting: The Effect of Two Neighbors: A Triplet [Seite 43]
8.4 - 4 Splitting: The Effect of Three Neighbors: A Quartet [Seite 45]
8.5 - 5 Splitting: The Effect of "n" Neighbors: A Multiplet [Seite 50]
8.6 - 6 Using Splitting Patterns to Choose from a Group of Isomers [Seite 54]
8.7 - 7 Peak Intensities (Peak Areas) and the Number of Protons in a Peak [Seite 57]
8.8 - 8 Publication Format for Proton NMR Data [Seite 59]
8.9 - 9 Recognizing Common Structure Fragments [Seite 61]
8.10 - 10 Overlap in Proton NMR Spectra. Example: 1-Methoxyhexane [Seite 65]
8.11 - 11 Protons Bound to Oxygen: OH Groups. Example: 2-Ethyl-1-Butanol [Seite 68]
8.12 - 12 Summary of Chemical Shifts and Splitting Patterns [Seite 70]
9 - Chapter 3: Proton (1H) NMR of Aromatic Compounds [Seite 71]
9.1 - 1 Benzene: The Aromatic Ring Current and the Shielding Cone [Seite 71]
9.2 - 2 Monsubstituted Benzene: X-C6H5 [Seite 72]
9.2.1 - 2.1 Toluene [Seite 72]
9.2.2 - 2.2 Aromatic Chemical Shifts: Resonance Structures [Seite 74]
9.2.3 - 2.3 Nitrobenzene [Seite 75]
9.2.4 - 2.4 Anisole [Seite 76]
9.2.5 - 2.5 Substituent Effects on Aromatic Chemical Shifts [Seite 78]
9.2.6 - 2.6 Long-Range J Couplings in Aromatic Rings: Protons 4 Bonds Apart [Seite 79]
9.3 - 3 Disubstituted Benzene: X-C6H4-Y [Seite 82]
9.3.1 - 3.1 Symmetrical Disubstituted Benzene: X-C6H4-X [Seite 82]
9.3.2 - 3.2 Unsymmetrical Disubstituted Benzene, X-C6H4-Y [Seite 92]
9.3.2.1 - 3.2.1 para (1,4) Disubstituted Benzene: p-X-C6H4-Y [Seite 93]
9.3.2.2 - 3.2.2 meta (1,3) Disubstituted Benzene: m-X-C6H4-Y [Seite 98]
9.3.2.3 - 3.2.3 ortho (1,2) Disubstituted Benzene: o-X-C6H4-Y [Seite 107]
9.4 - 4 Coupling Between Aromatic Ring Protons and Substitutent Protons [Seite 120]
9.4.1 - 4.1 The Methyl Group (CH3) [Seite 120]
9.4.2 - 4.2 The Methoxy Substituent (OCH3) [Seite 122]
9.4.3 - 4.3 The Formyl (H-C=O) Substituent [Seite 123]
9.5 - 5 Trisubstituted Aromatic Rings: The AB2 System [Seite 126]
9.6 - 6 Other Aromatic Ring Systems: Heteroaromatics, Five-Membered Rings and Fused Rings [Seite 130]
9.6.1 - 6.1 Pyridine (C5H5N) [Seite 131]
9.6.2 - 6.2 Pyrrole (C4H5N) [Seite 132]
9.6.3 - 6.3 Furan (C4H4O) [Seite 133]
9.6.4 - 6.4 Naphthalene (C10H8) [Seite 135]
9.6.5 - 6.5 Indole (C8H7N) [Seite 137]
9.6.6 - 6.6 Quinoline and Isoquinoline (C9H7N) [Seite 138]
9.7 - 7 Summary of New Concepts: Proton NMR of Aromatic Compounds [Seite 140]
10 - Chapter 4: Carbon-13 (13C) NMR [Seite 145]
10.1 - 1 Natural Abundance and Sensitivity of 13C [Seite 145]
10.2 - 2 Proton Decoupling-Removing the Splitting Effect of Nearby Protons [Seite 146]
10.3 - 3 Intensity of 13C Peaks-Symmetry and Relaxation [Seite 146]
10.4 - 4 Chemical Shifts of Carbon-13 (13C) Nuclei [Seite 149]
10.4.1 - 4.1 13C Frequency and Chemical Shift Reference [Seite 149]
10.4.2 - 4.2 General Regions of the 13C Chemical Shift Scale [Seite 150]
10.4.3 - 4.3 Correlations between 1H and 13C Chemical Shift for a C-H Pair [Seite 152]
10.4.4 - 4.4 Quantitation of the Steric Effect for 13C Chemical Shifts [Seite 155]
10.4.5 - 4.5 Example of Steric Effects on 13C Chemical Shifts: The "Crowded CH" in Steroids [Seite 161]
10.4.6 - 4.6 The ?-gauche Effect: Steric Shifts That Give Stereochemical Information [Seite 163]
10.4.7 - 4.7 Inductive Effects in 13C Chemical Shifts: Electronegative Atoms [Seite 167]
10.4.8 - 4.8 The Effect of Ring Strain on 13C Chemical Shift of sp3-Hybridized Carbons [Seite 170]
10.5 - 5 Quaternary Carbons: The Carbonyl Group [Seite 171]
10.6 - 6 Simple Aromatic Compounds: Substituent Effects on 13C Chemical Shifts [Seite 176]
10.7 - 7 Highly Oxygenated Benzene Rings and Coumarin [Seite 181]
10.8 - 8 Fused Rings and Heteroaromatic Compounds [Seite 185]
10.8.1 - 8.1 Pyridine (C5H5N) [Seite 185]
10.8.2 - 8.2 Pyrrole (C4H5N) [Seite 187]
10.8.3 - 8.3 Furan (C4H4O) [Seite 188]
10.8.4 - 8.4 Naphthalene (C10H8) [Seite 188]
10.8.5 - 8.5 Indole (C8H7N) [Seite 190]
10.8.6 - 8.6 Quinoline and Isoquinoline (C9H7N) [Seite 193]
10.9 - 9 Edited 13C Spectra: DEPT [Seite 194]
10.9.1 - 9.1 Non-decoupled 13C Spectra [Seite 195]
10.9.2 - 9.2 Edited 13C Spectra [Seite 196]
10.9.3 - 9.3 Practical Details of the DEPT Experiment [Seite 201]
10.9.3.1 - 9.3.1 Sensitivity [Seite 201]
10.9.3.2 - 9.3.2 Pulse Calibration [Seite 201]
10.9.3.3 - 9.3.3 J Value Setting [Seite 202]
10.9.3.4 - 9.3.4 Phase Correction [Seite 205]
10.10 - 10 The Effect of Other Magnetic Nuclei on the 13C Spectrum: 31P, 19F, 2H and 14N [Seite 205]
10.10.1 - 10.1 Splitting of 13C Peaks By Deuterium (2H) [Seite 205]
10.10.2 - 10.2 Splitting of 13C Peaks by Phosphorus (31P) [Seite 206]
10.10.3 - 10.3 Splitting of 13C Peaks by Fluorine (19F) [Seite 208]
10.10.4 - 10.4 Splitting and Broadening of 13C Peaks by Nitrogen (14N) [Seite 209]
10.11 - 11 Direct Observation of Nuclei Other Than Proton (1H) and Carbon (13C) [Seite 210]
10.11.1 - 11.1 Phosphorus-31 (31P) NMR [Seite 212]
10.11.2 - 11.2 Fluorine-19 (19F) NMR [Seite 214]
11 - Chapter 5: Alkenes (Olefins) [Seite 218]
11.1 - 1 Proton Chemical Shifts of Simple Olefins [Seite 219]
11.2 - 2 Short-Range (Two and Three Bond) Coupling Constants (J Values) in Olefins [Seite 222]
11.3 - 3 The Allylic Coupling: A Long-Range (Four-Bond) J Coupling [Seite 225]
11.4 - 4 Long-Range Olefin Couplings in Cholesterol: The bis-Allylic Coupling (J) [Seite 229]
11.5 - 5 Carbon-13 Chemical Shifts of Hydrocarbon Olefins (Alkenes) [Seite 230]
11.6 - 6 Resonance Effects on Olefinic 13C Chemical Shifts [Seite 234]
11.6.1 - 13C and DEPT Spectra [Seite 241]
11.6.2 - Proton Spectrum [Seite 241]
11.6.3 - Vinyl Group Spin System: Peaks x, y and z [Seite 242]
11.6.4 - Second Olefin Spin System: Peaks t, u, v and w [Seite 243]
11.7 - 7 Alkynes [Seite 245]
12 - Chapter 6: Chirality and Stereochemistry: Natural Products [Seite 247]
12.1 - 1 The Molecules of Nature [Seite 247]
12.2 - 2 Chirality, Chiral Centers, Chiral Molecules, and the Chiral Environment [Seite 250]
12.3 - 3 The AB System [Seite 252]
12.4 - 4 Detailed Analysis of the AB Spectrum: Calculating the Chemical Shifts [Seite 254]
12.5 - 5 The ABX System [Seite 257]
12.6 - 6 Variations on the ABX Theme: ABX3, ABX2 and ABXY [Seite 265]
12.7 - 7 The Effect of Chirality on 13C Spectra. Diastereotopic Carbons [Seite 269]
12.8 - 8 A Closer Look at Chemical Shift Equivalence in an Asymmetric Environment [Seite 271]
12.8.1 - 8.1 Chemical Shift Equivalence of CH3 Group Protons [Seite 271]
12.8.2 - 8.2 Non-Equivalence of CH2 Group Protons [Seite 272]
12.8.3 - 8.3 Chemical Shift Equivalence by Symmetry [Seite 272]
12.9 - 9 J Couplings and Chemical Shifts in the Rigid Cyclohexane Chair System [Seite 275]
12.9.1 - 6.9.1 Cyclohexene and Cyclohexenone [Seite 282]
12.10 - 10 A Detailed Look at the Dependence of 3JHH on Dihedral Angle: The Karplus Relation [Seite 286]
12.11 - 11 Magnetic Non-Equivalence. The X-CH2-CH2-Y Spin System: A2B2 and AA'BB' Patterns [Seite 296]
12.12 - 12 Bicyclic Compounds and Small Rings (Three- and Four-Membered) [Seite 306]
12.12.1 - 12.1 The Bicyclo[2.2.1] Ring System [Seite 306]
12.12.2 - 12.2 The Bicyclo[3.1.0] Ring System [Seite 311]
12.12.3 - 12.3 The Bicyclo[3.1.1] Ring System [Seite 314]
12.13 - Reference [Seite 318]
13 - Chapter 7: Selective Proton Experiments: Biological Molecules [Seite 319]
13.1 - 1 Sugars: Monosaccharides and Oligosaccharides [Seite 319]
13.2 - 2 Slowing of OH Exchange in Polar Aprotic Solvents Like DMSO [Seite 325]
13.3 - 3 Selective TOCSY Applied to the Assignment of the 1H Spectra of Sugars [Seite 327]
13.4 - 4 The Selective NOE (Nuclear Overhauser Effect) Experiment [Seite 339]
13.4.1 - 4.1 Recognizing Artifacts in Selective NOE Spectra [Seite 340]
13.4.2 - 4.2 The Relationship Between NOE Intensity and Distance [Seite 340]
13.4.3 - 4.3 Magnetization Transfer in the Selective TOCSY and Selective NOE Experiments [Seite 341]
13.5 - 5 Amino Acids and Peptides [Seite 351]
13.6 - 6 Nucleic Acids [Seite 368]
13.7 - 7 Parameter Settings for NMR Experiment Setup and NMR Data Processing [Seite 377]
13.8 - Bibliography [Seite 378]
14 - Chapter 8: Homonuclear Two-Dimensional NMR: Correlation of One Hydrogen (1H) to Another [Seite 379]
14.1 - 1 Selective TOCSY Experiments Displayed as a Stacked Plot [Seite 379]
14.2 - 2 The Two-Dimensional COSY Experiment [Seite 385]
14.3 - 3 Shape and Fine Structure of COSY Crosspeaks [Seite 390]
14.4 - 4 2D-COSY Spectra of Sugars [Seite 396]
14.5 - Exercises 8.2-8.7: COSY Cartoons [Seite 400]
14.6 - 5 2D-COSY Spectra of Aromatic Compounds [Seite 411]
14.7 - 6 Parameter Settings in the 2D COSY Experiment [Seite 417]
14.8 - 7 COSY Spectra of Peptides [Seite 419]
14.9 - 8 COSY Spectra of Natural Products [Seite 425]
14.10 - 9 Two-Dimensional (2D) TOCSY (Total Correlation Spectroscopy) [Seite 432]
14.11 - 10 Two-Dimensional (2D) NOESY (Nuclear Overhauser Effect Spectroscopy) [Seite 443]
14.12 - Parameter Settings Used for 2D Spectra in this Chapter [Seite 449]
15 - Chapter 9: Heteronuclear Two-Dimensional NMR: Correlation of One Hydrogen (1H) to One Carbon (13C) [Seite 450]
15.1 - 1 3-Heptanone: A Thought Experiment [Seite 450]
15.2 - 2 Edited HSQC: Making the CH2 Protons Stand Out [Seite 456]
15.3 - 3 The 2D-HSQC Spectrum of Cholesterol [Seite 463]
15.4 - 4 A Detailed Look at the HSQC Experiment [Seite 475]
15.5 - 5 Parameters and Settings for the 2D-HSQC Experiment [Seite 478]
15.5.1 - 5.1 Spectral Window [Seite 478]
15.5.2 - 5.2 Acquisition Time [Seite 478]
15.5.3 - 5.3 One-Bond J Coupling Value [Seite 479]
15.5.4 - 5.4 Number of 1D Spectra Acquired: F1 Resolution [Seite 480]
15.5.5 - 5.5 Number of Scans: Sensitivity [Seite 480]
15.6 - 6 Data Processing: Phase Correction in Two Dimensions [Seite 480]
15.7 - 7 Long-Range Couplings Between 1H and 13C [Seite 483]
15.8 - 8 2D-HMBC (Heteronuclear Multiple-Bond Correlation) [Seite 485]
15.8.1 - 8.1 2D-HMBC Spectra of Aromatic Compounds [Seite 487]
15.8.2 - 8.2 HMBC Spectra of Natural Products: Using the Methyl Correlations [Seite 495]
15.8.3 - 8.3 HMBC Spectra of Sugars [Seite 511]
15.9 - 9 Parameters and Settings for the 2D-HMBC Experiment [Seite 515]
15.9.1 - 9.1 Spectral Window [Seite 515]
15.9.2 - 9.2 Acquisition Time [Seite 516]
15.9.3 - 9.3 One-Bond and Long-Range JCH Coupling Values [Seite 516]
15.9.4 - 9.4 Number of Scans [Seite 516]
15.10 - 10 Comparison of HSQC and HMBC [Seite 516]
15.11 - 11 HMBC Variants [Seite 517]
15.12 - Parameter Settings Used for 2D Spectra in this Chapter [Seite 517]
15.13 - References [Seite 518]
16 - Chapter 10: Structure Elucidation Using 2D NMR [Seite 519]
16.1 - 1 Literature Structure Problems [Seite 520]
16.2 - 2 Sesquiterpenoids [Seite 521]
16.3 - 3 Steroids [Seite 542]
16.4 - 4 Oligosaccharides [Seite 572]
16.5 - 5 Alkaloids [Seite 594]
16.6 - 6 Triterpenes [Seite 617]
16.7 - Reference [Seite 635]
17 - Index [Seite 637]
18 - End User License Agreement [Seite 651]