Schweitzer Fachinformationen
Wenn es um professionelles Wissen geht, ist Schweitzer Fachinformationen wegweisend. Kunden aus Recht und Beratung sowie Unternehmen, öffentliche Verwaltungen und Bibliotheken erhalten komplette Lösungen zum Beschaffen, Verwalten und Nutzen von digitalen und gedruckten Medien.
Erik Hoel
Environmental Systems Research Institute, Redlands, California, USA
Big data analytics, in the context of geospatial data, employs distributed computing using advanced tools that support spatiotemporal analysis, spatial statistics, and machine learning algorithms and techniques (e.g., classification, clustering, and prediction) on very large spatiotemporal data sets to visualize, detect patterns, gain deeper understandings, and answer questions. In this chapter, the key definitions, domain specific problems, analysis concepts, current technologies and tools, and remaining challenges are discussed.
Big data analytics involves analyzing large volumes of varied data, or big data, to identify and understand patterns, correlations, and trends that ordinarily are invisible due to the volumes involved in order to allow users and organizations to make better decisions. These analytics, in the context of geospatial data, commonly involve spatial processing, sophisticated spatial statistical algorithms, and predictive modeling. Big data can be obtained from a wide variety of sources; this includes sensors (both stationary and moving), aerial and satellite imagery, Lidar, videos, social networks, website activity, sales transaction records, and real-time stock trading transactions. Users and data scientists apply big data analytics to evaluate these large collections of data, data with volumes that traditional analytical systems are unable to accommodate (Miller & Goodchild, 2014). This is particularly the case with unstructured or semistructured data (such data types are problematic with data warehouses, which often utilize relational database concepts and work with structured data).
To address these complex demands, many new analytic environments and technologies have been developed. This includes distributed processing infrastructures such as Spark and MapReduce (Dean & Ghemawat, 2008; Garillot &Maas, 2018; Zaharia et al., 2010), distributed file stores, and NoSQL databases (Alexander & Copeland, 1988; DeWitt & Gray, 1992; Klein et al., 2016; NoSQL, 2022; Pavlo & Aslett, 2016). Many of these technologies are available in open-source software frameworks, such as Apache Hadoop (2018), that can be used to process huge data sets with clustered systems.
When working with big data, there is a collection of objectives that users have when performing big data analytics (Marz & Warren, 2013; Mysore et al., 2013). These include
Spatial big data are differentiated from standard (nonspatial) big data by the presence of spatial relationships, geostatistical correlations, and spatial semantic relations (this can be generalized to include the temporal domain (Hägerstrand, 1970). Spatial big data offer additional challenges beyond what is encountered with more traditional big data. Spatial big data are characterized by the following (Barwick, 2011):
Once spatial big data are structured, formal spatial analytics can be applied, such as spatial autocorrelation, overlays, buffering, spatial cluster techniques, and location quotients.
The terms in Table 1.1 are referenced in this chapter and are included here to facilitate a more rapid understanding of the general concepts discussed later.
Table 1.1 Terms for understanding general concepts
Dateiformat: ePUBKopierschutz: Adobe-DRM (Digital Rights Management)
Systemvoraussetzungen:
Das Dateiformat ePUB ist sehr gut für Romane und Sachbücher geeignet – also für „fließenden” Text ohne komplexes Layout. Bei E-Readern oder Smartphones passt sich der Zeilen- und Seitenumbruch automatisch den kleinen Displays an. Mit Adobe-DRM wird hier ein „harter” Kopierschutz verwendet. Wenn die notwendigen Voraussetzungen nicht vorliegen, können Sie das E-Book leider nicht öffnen. Daher müssen Sie bereits vor dem Download Ihre Lese-Hardware vorbereiten.Bitte beachten Sie: Wir empfehlen Ihnen unbedingt nach Installation der Lese-Software diese mit Ihrer persönlichen Adobe-ID zu autorisieren!
Weitere Informationen finden Sie in unserer E-Book Hilfe.