Inhaltsübersicht.- Erster Teil. Was ist eine Integralgleichung? Ergebnisse der mathematischen Theorie, insbesondere bei den linearen Integralgleichungen zweiter Art mit symmetrischem Kern.- 1. Einleitende Bemerkungen.- 2. Einfachste Schwingungsaufgaben führen auf eine Uneare Integralgleichung mit symmetrischem Kern.- 3. Zusammenhang mit den gewöhnlichen Differentialgleichungen erster und zweiter Ordnung.- 4. Der elementare Teil der Theorie.- 5. Die Beziehungen der Integralgleichungen zu den partiellen Differentialgleichungen der Physik und andere physikalische Anwendungen.- 6. Durchführung der Theorie für die symmetrischen Kerne.- Zweiter Teil. Weitergehende Ausführungen.- 1. Die lineare Integralgleichung erster Art.- 2. Ausgeartete unsymmetrische Integralgleichungen zweiter Art.- 3. Die Fredholmsche Theorie.- 4. Das Verfahren von Enskog.- 5. E. Schmidts Theorie der unsymmetrischen Kerne.- 6. Quellenmäßige Darstellbarkeit und Entwickelbarkeit.- 7. Die polare Integralgleichung.- 8. Hilberts erster Weg über ein algebraisches Problem zur Lösung linearer Integralgleichungen.- 9. Die Methode der unendlich vielen Variablen. Der Hilbertsche Raum.- 10. Unendlich viele lineare Gleichungen mit unendlich vielen Unbekannten..- 11. Die Mathieusche Gleichung.- 12. Abels Integralgleichung.- 13. Singulare Kerne. Beispiele.- 14a. Eine Integralgleichung aus der Theorie der Tragflügel.- 14b. Die Integralgleichung von L. Föppl. (Härteproblem von Hertz).- 15. Einige weitere Orthogonalsysteme und ihre Kerne.- 16. Das Schwingungsproblem von Duffing.- 17. Nichtlineare Integralgleichungen.- Namenverzeichnis.