1 - Science of Synthesis: Knowledge Updates 2011/4 [Seite 1]
1.1 - Title page [Seite 5]
1.2 - Imprint [Seite 7]
1.3 - Preface [Seite 8]
1.4 - Abstracts [Seite 10]
1.5 - Overview [Seite 16]
1.6 - Table of Contents [Seite 18]
1.7 - Volume 2: Compounds of Groups 7-3 (Mn···, Cr···, V···, Ti···, Sc···, La···, Ac···) [Seite 32]
1.7.1 - 2.12 Product Class 12: Organometallic Complexes of Scandium, Yttrium, and the Lanthanides [Seite 32]
1.7.1.1 - 2.12.15 Organometallic Complexes of Scandium, Yttrium, and the Lanthanides [Seite 32]
1.7.1.1.1 - 2.12.15.1 Lanthanide-Catalyzed Mukaiyama Aldol Reactions [Seite 32]
1.7.1.1.1.1 - 2.12.15.1.1 Method 1: Non-enantioselective Formation of ß-Hydroxycarbonyls [Seite 32]
1.7.1.1.1.2 - 2.12.15.1.2 Method 2: Enantioselective Formation of ß-Hydroxycarbonyls [Seite 35]
1.7.1.1.1.2.1 - 2.12.15.1.2.1 Variation 1: In an Organic Solvent [Seite 35]
1.7.1.1.1.2.2 - 2.12.15.1.2.2 Variation 2: In an Aqueous Solvent [Seite 38]
1.7.2 - 2.14 Product Class 14: Group 4 Metallocene Complexes with Bis(trimethylsilyl)acetylene [Seite 42]
1.7.2.1 - 2.14.1 Product Subclass 1: Titanocene-Bis(trimethylsilyl)acetylene Complexes [Seite 44]
1.7.2.1.1 - Synthesis of Product Subclass 1 [Seite 44]
1.7.2.1.1.1 - 2.14.1.1 Method 1: Reduction of a Dichlorobis(.5-cyclopentadienyl)titanium Derivative in the Presence of Bis(trimethylsilyl)acetylene [Seite 44]
1.7.2.1.1.1.1 - 2.14.1.1.1 Variation 1: Reduction and Intramolecular Dehydrocoupling of Cyclopentadienyl Fragments [Seite 45]
1.7.2.1.1.2 - 2.14.1.2 Method 2: Methane Elimination from Bis(.5-cyclopentadienyl)dimethyltitanium(IV) [Seite 46]
1.7.2.1.2 - Applications of Product Subclass 1 in Organometallic Reactions [Seite 46]
1.7.2.1.2.1 - 2.14.1.3 Method 3: Reactions with Brønsted Acids [Seite 46]
1.7.2.1.2.1.1 - 2.14.1.3.1 Variation 1: Reaction with Methanol [Seite 48]
1.7.2.1.2.2 - 2.14.1.4 Method 4: Titanocene-Bis(trimethylsilyl)acetylene Complexes in the Formation of Metallacycles [Seite 49]
1.7.2.1.2.2.1 - 2.14.1.4.1 Variation 1: Formation of Five-Membered Group 4 Metallacycles [Seite 49]
1.7.2.1.2.2.2 - 2.14.1.4.2 Variation 2: Formation of Six-Membered Metallacycles [Seite 50]
1.7.2.1.2.2.3 - 2.14.1.4.3 Variation 3: Formation of Three-Membered Aza-metallacycles [Seite 51]
1.7.2.1.2.2.4 - 2.14.1.4.4 Variation 4: Formation of Four- and Five-Membered Aza-metallacycles [Seite 53]
1.7.2.1.2.2.5 - 2.14.1.4.5 Variation 5: Coupling Reactions of Dichlorophosphines and the Formation of Phospha-metallacycles [Seite 55]
1.7.2.1.2.2.6 - 2.14.1.4.6 Variation 6: Formation of Stiba-metallacycles [Seite 56]
1.7.2.1.2.2.7 - 2.14.1.4.7 Variation 7: Formation of Four-Membered Thia-metallacycles [Seite 58]
1.7.2.1.2.2.8 - 2.14.1.4.8 Variation 8: Formation of Four-Membered Selena-metallacycles [Seite 59]
1.7.2.1.2.3 - 2.14.1.5 Method 5: Titanocene-Bis(trimethylsilyl)acetylene Complexes in Supramolecular Chemistry [Seite 59]
1.7.2.1.2.3.1 - 2.14.1.5.1 Variation 1: Dehydrogenative Coupling [Seite 62]
1.7.2.1.2.4 - 2.14.1.6 Method 6: Titanocene-Bis(trimethylsilyl)acetylene Complexes in Bond-Activation Reactions [Seite 63]
1.7.2.1.2.4.1 - 2.14.1.6.1 Variation 1: Dinitrogen Activation [Seite 63]
1.7.2.1.2.4.2 - 2.14.1.6.2 Variation 2: C--F Bond Activation [Seite 64]
1.7.2.1.2.4.3 - 2.14.1.6.3 Variation 3: C--C Single-Bond Metathesis [Seite 65]
1.7.2.1.2.5 - 2.14.1.7 Method 7: Catalytic Hydroamination of Alkynes [Seite 66]
1.7.2.1.2.6 - 2.14.1.8 Method 8: Catalytic Dehydrogenation of Dimethylamine Borane [Seite 67]
1.7.2.1.2.7 - 2.14.1.9 Method 9: Oxidation Reactions [Seite 67]
1.7.2.1.2.8 - 2.14.1.10 Method 10: Reactions with Alkynes: Alkyne Substitution Reactions [Seite 68]
1.7.2.1.2.8.1 - 2.14.1.10.1 Variation 1: Reactions with Alkynylsilanes [Seite 70]
1.7.2.1.2.8.2 - 2.14.1.10.2 Variation 2: Reactions with Polyynes [Seite 70]
1.7.2.1.2.9 - 2.14.1.11 Method 11: Lewis Base Exchange [Seite 72]
1.7.2.1.2.10 - 2.14.1.12 Method 12: Reactions with Carbon Dioxide [Seite 72]
1.7.2.2 - 2.14.2 Product Subclass 2: Zirconocene-Bis(trimethylsilyl)acetylene Complexes [Seite 73]
1.7.2.2.1 - Synthesis of Product Subclass 2 [Seite 73]
1.7.2.2.1.1 - 2.14.2.1 Method 1: Reduction of a Dichlorobis(.5-cyclopentadienyl)zirconium(IV) in the Presence of Bis(trimethylsilyl)acetylene [Seite 73]
1.7.2.2.1.1.1 - 2.14.2.1.1 Variation 1: By Ligand Substitution [Seite 75]
1.7.2.2.2 - Applications of Product Subclass 2 in Organometallic Reactions [Seite 76]
1.7.2.2.2.1 - 2.14.2.2 Method 2: Reactions with Brønsted Acids [Seite 76]
1.7.2.2.2.2 - 2.14.2.3 Method 3: Reactions with Internal Alkynes [Seite 77]
1.7.2.2.2.2.1 - 2.14.2.3.1 Variation 1: Alkyne Substitutions [Seite 78]
1.7.2.2.2.2.2 - 2.14.2.3.2 Variation 2: Formation of Zirconacyclopenta-2,4-dienes [Seite 79]
1.7.2.2.2.2.3 - 2.14.2.3.3 Variation 3: Macrocyclization [Seite 82]
1.7.2.2.2.2.4 - 2.14.2.3.4 Variation 4: Formation of Pentakis(pentafluorophenyl)borole [Seite 83]
1.7.2.2.2.3 - 2.14.2.4 Method 4: Reactions with Terminal Alkynes [Seite 84]
1.7.2.2.2.4 - 2.14.2.5 Method 5: Reactions with Carbonyl Compounds [Seite 85]
1.7.2.2.2.5 - 2.14.2.6 Method 6: Zirconocene-Bis(trimethylsilyl)acetylene Complexes in the Formation of Metallacycles [Seite 86]
1.7.2.2.2.5.1 - 2.14.2.6.1 Variation 1: Formation of Five-Membered Metallacycles [Seite 86]
1.7.2.2.2.5.2 - 2.14.2.6.2 Variation 2: Formation of Three-Membered Aza-metallacycles [Seite 87]
1.7.2.2.2.5.3 - 2.14.2.6.3 Variation 3: Formation of Five-Membered Aza-metallacycles [Seite 88]
1.7.2.2.2.5.4 - 2.14.2.6.4 Variation 4: Formation of Five- and Seven-Membered Oxa-metallacycles [Seite 89]
1.7.2.2.2.5.5 - 2.14.2.6.5 Variation 5: Formation of Four-Membered Thia-metallacycles [Seite 90]
1.7.2.2.2.6 - 2.14.2.7 Method 7: Zirconocene-Bis(trimethylsilyl)acetylene Complexes in Bond-Activation Reactions [Seite 91]
1.7.2.2.2.6.1 - 2.14.2.7.1 Variation 1: Dinitrogen Activation [Seite 91]
1.7.2.2.2.6.2 - 2.14.2.7.2 Variation 2: C--F versus C--H Bond Activation [Seite 92]
1.7.2.2.2.6.3 - 2.14.2.7.3 Variation 3: C--H Bond Activation [Seite 93]
1.7.2.3 - 2.14.3 Product Subclass 3: Hafnocene Bis(trimethylsilyl)acetylene Complexes [Seite 94]
1.7.2.3.1 - Synthesis of Product Subclass 3 [Seite 94]
1.7.2.3.1.1 - 2.14.3.1 Method 1: Reduction of a Dichlorobis(.5-cyclopentadienyl)hafnium in the Presence of Bis(trimethylsilyl)acetylene [Seite 94]
1.7.2.3.1.2 - 2.14.3.2 Method 2: Synthesis from Dibutylbis(.5-cyclopentadienyl)hafnium(IV) [Seite 97]
1.7.2.3.2 - Applications of Product Subclass 3 in Organometallic Reactions [Seite 97]
1.7.2.3.2.1 - 2.14.3.3 Method 3: Reactions with Alkenes [Seite 97]
1.8 - Volume 6: Boron Compounds [Seite 104]
1.8.1 - 6.1 Product Class 1: Boron Compounds [Seite 104]
1.8.1.1 - 6.1.7.11 Hydroxyboranes [Seite 104]
1.8.1.1.1 - 6.1.7.11.1 Method 1: Synthesis by Metal-Catalyzed C--H Borylation [Seite 104]
1.8.1.1.1.1 - 6.1.7.11.1.1 Variation 1: Aromatic C--H Borylation [Seite 104]
1.8.1.1.1.2 - 6.1.7.11.1.2 Variation 2: Dehydrogenative Borylation [Seite 107]
1.8.1.1.2 - 6.1.7.11.2 Method 2: Synthesis by Borylative Cross Coupling [Seite 108]
1.8.1.1.2.1 - 6.1.7.11.2.1 Variation 1: Palladium-Catalyzed Borylative Cross Coupling [Seite 108]
1.8.1.1.2.2 - 6.1.7.11.2.2 Variation 2: Nickel- and Copper-Catalyzed Borylative Cross Coupling [Seite 109]
1.8.1.1.2.3 - 6.1.7.11.2.3 Variation 3: Metal-Free Borylative Cross Coupling [Seite 110]
1.8.1.1.3 - 6.1.7.11.3 Method 3: Synthesis by Direct Borylation with Borenium Cations [Seite 111]
1.8.1.1.4 - 6.1.7.11.4 Method 4: Synthesis by Addition Reactions with Diboron Species [Seite 112]
1.8.1.1.4.1 - 6.1.7.11.4.1 Variation 1: Addition of Diboron Species to Carbonyl or Thiocarbonyl Groups, or Aldimines [Seite 113]
1.8.1.1.4.2 - 6.1.7.11.4.2 Variation 2: ß-Boration of a,ß-Unsaturated Carbonyl Derivatives [Seite 114]
1.8.1.1.5 - 6.1.7.11.5 Method 5: Synthesis by Hydrolysis of Boronates or Trifluoro(organo)borates [Seite 115]
1.8.1.1.6 - 6.1.7.11.6 Method 6: Chemoselective Chemical Transformations of Parent Free Boronic Acids or Derivatives [Seite 117]
1.8.1.1.7 - 6.1.7.11.7 Method 7: Applications as Catalysts or Stoichiometric Reaction Promoters [Seite 118]
1.8.1.1.7.1 - 6.1.7.11.7.1 Variation 1: Activation of Carboxylic Acids [Seite 119]
1.8.1.1.7.2 - 6.1.7.11.7.2 Variation 2: Activation of Alcohols [Seite 121]
1.8.1.1.7.3 - 6.1.7.11.7.3 Variation 3: Activation of Carbonyl Groups [Seite 123]
1.8.1.1.7.4 - 6.1.7.11.7.4 Variation 4: Use as Stoichiometric Reaction Promoters [Seite 124]
1.8.1.1.8 - 6.1.7.11.8 Method 8: Applications in Carbon--Heteroatom Bond Formation [Seite 125]
1.8.1.1.8.1 - 6.1.7.11.8.1 Variation 1: C--O Bond Formation [Seite 126]
1.8.1.1.8.2 - 6.1.7.11.8.2 Variation 2: C--X Bond Formation (X = Halogen) [Seite 127]
1.8.1.1.8.3 - 6.1.7.11.8.3 Variation 3: C--N Bond Formation [Seite 128]
1.8.1.1.9 - 6.1.7.11.9 Method 9: Applications in C--C Bond Formation [Seite 129]
1.8.1.1.9.1 - 6.1.7.11.9.1 Variation 1: ipso-Trifluoromethylation and ipso-Cyanation [Seite 129]
1.8.1.1.9.2 - 6.1.7.11.9.2 Variation 2: C--H Arylation and Alkylation [Seite 130]
1.8.1.1.9.3 - 6.1.7.11.9.3 Variation 3: Metal-Catalyzed Cross-Coupling Reactions [Seite 131]
1.8.1.1.9.4 - 6.1.7.11.9.4 Variation 4: Addition and Substitution Reactions [Seite 133]
1.8.1.1.10 - 6.1.7.11.10 Method 10: Applications as Productive Tags for Phase-Switch Purification [Seite 134]
1.8.1.1.11 - 6.1.7.11.11 Method 11: Applications in Medicine and Materials Science [Seite 136]
1.9 - Volume 7: Compounds of Groups 13 and 2 (Al, Ga, In, Tl, Be ··· Ba) [Seite 144]
1.9.1 - 7.1 Product Class 1: Aluminum Compounds [Seite 144]
1.9.1.1 - 7.1.4.7 Aluminum Alkoxides and Phenoxides [Seite 144]
1.9.1.1.1 - 7.1.4.7.1 Method 1: Synthesis by Treatment of Alkylaluminum Compounds with Phenols [Seite 144]
1.9.1.1.1.1 - 7.1.4.7.1.1 Variation 1: Reaction To Give Aluminum-Salen Complexes and Their µ-Oxo Dimers [Seite 144]
1.9.1.1.2 - 7.1.4.7.2 Method 2: Applications of Aluminum Alkoxides [Seite 145]
1.9.1.1.2.1 - 7.1.4.7.2.1 Variation 1: Reductions [Seite 145]
1.9.1.1.2.2 - 7.1.4.7.2.2 Variation 2: Michael Additions [Seite 145]
1.9.1.1.3 - 7.1.4.7.3 Method 3: Applications of Aluminum Phenoxides [Seite 146]
1.9.1.1.3.1 - 7.1.4.7.3.1 Variation 1: Carbonyl Additions and Reductions [Seite 146]
1.9.1.1.3.2 - 7.1.4.7.3.2 Variation 2: Conjugate Additions [Seite 147]
1.9.1.1.3.3 - 7.1.4.7.3.3 Variation 3: Aldol Reactions [Seite 148]
1.9.1.1.3.4 - 7.1.4.7.3.4 Variation 4: Meerwein-Ponndorf-Verley Reactions [Seite 151]
1.9.1.1.3.5 - 7.1.4.7.3.5 Variation 5: Oppenauer Reactions [Seite 153]
1.9.1.1.3.6 - 7.1.4.7.3.6 Variation 6: Cycloadditions [Seite 153]
1.9.1.1.3.7 - 7.1.4.7.3.7 Variation 7: Cyclizations [Seite 154]
1.9.1.1.3.8 - 7.1.4.7.3.8 Variation 8: Ferrier Reactions [Seite 155]
1.9.1.1.3.9 - 7.1.4.7.3.9 Variation 9: Claisen Rearrangements [Seite 156]
1.9.1.1.3.10 - 7.1.4.7.3.10 Variation 10: Intramolecular Prenyl Transfer Reactions [Seite 157]
1.9.1.1.3.11 - 7.1.4.7.3.11 Variation 11: Radical Reactions [Seite 157]
1.9.1.1.3.12 - 7.1.4.7.3.12 Variation 12: Asymmetric Conjugate Additions [Seite 158]
1.9.1.1.3.13 - 7.1.4.7.3.13 Variation 13: Asymmetric Acylations [Seite 159]
1.9.1.1.3.14 - 7.1.4.7.3.14 Variation 14: Asymmetric Wagner-Meerwein-Type Rearrangements [Seite 159]
1.9.1.1.3.15 - 7.1.4.7.3.15 Variation 15: Asymmetric Passerini-Type Reactions [Seite 160]
1.9.1.2 - 7.1.7.15 Aluminum Amides [Seite 162]
1.9.1.2.1 - 7.1.7.15.1 Method 1: Synthesis by Treatment of Alkylaluminum Compounds with Amines [Seite 162]
1.9.1.2.2 - 7.1.7.15.2 Method 2: Applications in Transformation of Esters [Seite 162]
1.9.1.2.3 - 7.1.7.15.3 Method 3: Applications in Transformation of Amides [Seite 163]
1.9.1.2.4 - 7.1.7.15.4 Method 4: Applications in Alkylation with Aluminum Reagents [Seite 163]
1.9.1.2.5 - 7.1.7.15.5 Method 5: Applications in Wagner-Meerwein-Type Rearrangements [Seite 165]
1.9.1.2.6 - 7.1.7.15.6 Method 6: Applications in the Ene Reaction [Seite 167]
1.9.1.2.7 - 7.1.7.15.7 Method 7: Applications in Asymmetric Aldol Cycloadditions [Seite 168]
1.10 - Volume 8: Compounds of Group 1 (Li ··· Cs) [Seite 170]
1.10.1 - 8.1 Product Class 1: Lithium Compounds [Seite 170]
1.10.1.1 - 8.1.29 Dearomatization Reactions Using Organolithiums [Seite 170]
1.10.1.1.1 - 8.1.29.1 Intermolecular Dearomatization [Seite 170]
1.10.1.1.1.1 - 8.1.29.1.1 Dearomatizing Additions to Aryl Rings Bearing No Further Activation [Seite 170]
1.10.1.1.1.1.1 - 8.1.29.1.1.1 Method 1: Dearomatizing Addition to Naphthalenes [Seite 170]
1.10.1.1.1.1.2 - 8.1.29.1.1.2 Method 2: Dearomatizing Addition to Condensed Polyaromatics [Seite 171]
1.10.1.1.1.1.3 - 8.1.29.1.1.3 Method 3: Dearomatizing Addition to Pyridines and Other Electron-Deficient Heterocycles [Seite 172]
1.10.1.1.1.2 - 8.1.29.1.2 Dearomatizing Addition to Activated Aromatic Rings [Seite 175]
1.10.1.1.1.2.1 - 8.1.29.1.2.1 Method 1: Activation with 4,5-Dihydrooxazoles [Seite 175]
1.10.1.1.1.2.1.1 - 8.1.29.1.2.1.1 Variation 1: Dearomatizing Addition to Naphthyl-4,5-dihydrooxazoles [Seite 175]
1.10.1.1.1.2.1.2 - 8.1.29.1.2.1.2 Variation 2: Dearomatizing Addition to Pyridyl-4,5-dihydrooxazoles [Seite 177]
1.10.1.1.1.2.1.3 - 8.1.29.1.2.1.3 Variation 3: Dearomatizing Addition to Phenyl-4,5-dihydrooxazoles [Seite 178]
1.10.1.1.1.2.2 - 8.1.29.1.2.2 Method 2: Activation with Amides [Seite 180]
1.10.1.1.1.2.2.1 - 8.1.29.1.2.2.1 Variation 1: Dearomatizing Addition to Naphthylamides [Seite 180]
1.10.1.1.1.2.2.2 - 8.1.29.1.2.2.2 Variation 2: Dearomatizing Addition to Benzamides [Seite 181]
1.10.1.1.1.2.3 - 8.1.29.1.2.3 Method 3: Activation with Aldehydes and Ketones [Seite 182]
1.10.1.1.1.2.3.1 - 8.1.29.1.2.3.1 Variation 1: Dearomatizing Addition to Naphthyl Ketones [Seite 182]
1.10.1.1.1.2.3.2 - 8.1.29.1.2.3.2 Variation 2: Dearomatizing Addition to Acetophenones and Benzaldehydes [Seite 182]
1.10.1.1.1.2.4 - 8.1.29.1.2.4 Method 4: Activation with Esters [Seite 183]
1.10.1.1.1.2.4.1 - 8.1.29.1.2.4.1 Variation 1: Dearomatizing Addition to Naphthyl Esters [Seite 183]
1.10.1.1.1.2.4.2 - 8.1.29.1.2.4.2 Variation 2: Dearomatizing Addition to Benzoates [Seite 185]
1.10.1.1.1.2.5 - 8.1.29.1.2.5 Method 5: Activation with Carboxylic Acids [Seite 185]
1.10.1.1.1.2.6 - 8.1.29.1.2.6 Method 6: Activation with Sulfones [Seite 187]
1.10.1.1.1.2.7 - 8.1.29.1.2.7 Method 7: Activation with Imines [Seite 187]
1.10.1.1.2 - 8.1.29.2 Intramolecular Dearomatization (Dearomatizing Cyclization) [Seite 189]
1.10.1.1.2.1 - 8.1.29.2.1 Dearomatizing Cyclization of Lithiated Amides [Seite 189]
1.10.1.1.2.1.1 - 8.1.29.2.1.1 Method 1: Dearomatizing Cyclization of Naphthamides [Seite 189]
1.10.1.1.2.1.1.1 - 8.1.29.2.1.1.1 Variation 1: N-Allylnaphthamides [Seite 191]
1.10.1.1.2.1.1.2 - 8.1.29.2.1.1.2 Variation 2: Chiral N-Benzylnaphthamides [Seite 192]
1.10.1.1.2.1.2 - 8.1.29.2.1.2 Method 2: Dearomatizing Cyclization of Benzamides [Seite 192]
1.10.1.1.2.1.2.1 - 8.1.29.2.1.2.1 Variation 1: Asymmetric Dearomatizing Cyclization with Chiral Lithium Amides [Seite 194]
1.10.1.1.2.1.2.2 - 8.1.29.2.1.2.2 Variation 2: Stereospecific Dearomatizing Cyclization of (1-Phenylethyl)benzamides [Seite 196]
1.10.1.1.2.1.2.3 - 8.1.29.2.1.2.3 Variation 3: Dearomatizing Cyclization of N-Benzoyloxazolidines [Seite 197]
1.10.1.1.2.1.2.4 - 8.1.29.2.1.2.4 Variation 4: Photochemical Rearrangements of the Dearomatized Products [Seite 198]
1.10.1.1.2.1.3 - 8.1.29.2.1.3 Method 3: Dearomatizing Cyclization of Pyridine- and Quinolinecarboxamides [Seite 200]
1.10.1.1.2.1.3.1 - 8.1.29.2.1.3.1 Variation 1: Cyclizations of Lithium Enolates [Seite 202]
1.10.1.1.2.1.4 - 8.1.29.2.1.4 Method 4: Dearomatizing Cyclization of Electron-Rich Heterocyclic Amides [Seite 204]
1.10.1.1.2.1.4.1 - 8.1.29.2.1.4.1 Variation 1: Pyrrolecarboxamides [Seite 204]
1.10.1.1.2.1.4.2 - 8.1.29.2.1.4.2 Variation 2: Thiophenecarboxamides [Seite 207]
1.10.1.1.2.2 - 8.1.29.2.2 Dearomatizing Cyclization of Other Lithiated Compounds [Seite 210]
1.10.1.1.2.2.1 - 8.1.29.2.2.1 Method 1: Dearomatizing Cyclization of Lithiated Phosphinamides [Seite 210]
1.10.1.1.2.2.2 - 8.1.29.2.2.2 Method 2: Dearomatizing Cyclization of Lithiated Azo Compounds [Seite 211]
1.10.1.1.2.2.3 - 8.1.29.2.2.3 Method 3: Dearomatizing Cyclization of Lithiated 4,5-Dihydrooxazoles [Seite 212]
1.10.1.1.2.2.4 - 8.1.29.2.2.4 Method 4: Dearomatizing Cyclization of Lithiated Sulfones [Seite 213]
1.10.1.1.2.2.5 - 8.1.29.2.2.5 Method 5: [2,3]-Sigmatropic Dearomatization of Lithiated Sulfonium Salts [Seite 214]
1.10.1.1.3 - 8.1.29.3 Rearrangements Proceeding via Dearomatized Intermediates [Seite 214]
1.10.1.1.3.1 - 8.1.29.3.1 Method 1: Arylation of N-Benzylureas [Seite 214]
1.10.1.1.3.1.1 - 8.1.29.3.1.1 Variation 1: Pyridylation of Ureas [Seite 216]
1.10.1.1.3.1.2 - 8.1.29.3.1.2 Variation 2: Arylation of N-Allylureas [Seite 217]
1.10.1.1.3.2 - 8.1.29.3.2 Method 2: Arylation of O-Benzyl Carbamates [Seite 218]
1.10.1.1.3.3 - 8.1.29.3.3 Method 3: Arylation of S-Benzyl Thiocarbamates [Seite 218]
1.10.1.2 - 8.1.30 Carbolithiation of Carbon-Carbon Multiple Bonds [Seite 222]
1.10.1.2.1 - 8.1.30.1 Intermolecular Carbolithiation of C==C Bonds [Seite 222]
1.10.1.2.1.1 - 8.1.30.1.1 Method 1: Addition of Alkyllithiums to Alkenes [Seite 223]
1.10.1.2.1.1.1 - 8.1.30.1.1.1 Variation 1: Carbolithiation of Styrene Derivatives [Seite 223]
1.10.1.2.1.1.2 - 8.1.30.1.1.2 Variation 2: Carbolithiation of 1-Substituted Vinylarenes [Seite 226]
1.10.1.2.1.1.3 - 8.1.30.1.1.3 Variation 3: Carbolithiation of Stilbenes [Seite 228]
1.10.1.2.1.2 - 8.1.30.1.2 Method 2: Addition of Aryl- and Hetaryllithiums to Alkenes [Seite 230]
1.10.1.2.1.2.1 - 8.1.30.1.2.1 Variation 1: Halogen-Lithium Exchange [Seite 230]
1.10.1.2.1.2.2 - 8.1.30.1.2.2 Variation 2: Carbolithiation with Lithium Dianions [Seite 231]
1.10.1.2.2 - 8.1.30.2 Intramolecular Carbolithiation of C==C Bonds [Seite 232]
1.10.1.2.2.1 - 8.1.30.2.1 Method 1: Addition of Alkyllithiums to Alkenes [Seite 233]
1.10.1.2.2.1.1 - 8.1.30.2.1.1 Variation 1: Halogen-Lithium Exchange [Seite 233]
1.10.1.2.2.1.2 - 8.1.30.2.1.2 Variation 2: Arene-Catalyzed Lithiation [Seite 234]
1.10.1.2.2.1.3 - 8.1.30.2.1.3 Variation 3: Tin-Lithium Exchange [Seite 237]
1.10.1.2.2.1.4 - 8.1.30.2.1.4 Variation 4: Selenium-Lithium Exchange [Seite 239]
1.10.1.2.2.2 - 8.1.30.2.2 Method 2: Addition of Alkenyllithiums to Alkenes [Seite 240]
1.10.1.2.2.2.1 - 8.1.30.2.2.1 Variation 1: Halogen-Lithium Exchange [Seite 240]
1.10.1.2.2.2.2 - 8.1.30.2.2.2 Variation 2: Carbolithiation of Lithiated Double Bonds Obtained by Halogen-Lithium Exchange [Seite 242]
1.10.1.2.2.3 - 8.1.30.2.3 Method 3: Addition of Aryl- and Hetaryllithiums to Alkenes [Seite 244]
1.10.1.2.2.3.1 - 8.1.30.2.3.1 Variation 1: Formation of Five-Membered Rings [Seite 244]
1.10.1.2.2.3.2 - 8.1.30.2.3.2 Variation 2: Formation of Six-Membered Rings [Seite 248]
1.10.1.2.3 - 8.1.30.3 Intermolecular Carbolithiation of C==C Bonds [Seite 250]
1.10.1.2.3.1 - 8.1.30.3.1 Method 1: Addition of Alkyl- and Aryllithiums to Alkynes [Seite 251]
1.10.1.2.4 - 8.1.30.4 Intramolecular Carbolithiation of C==C Bonds [Seite 253]
1.10.1.2.4.1 - 8.1.30.4.1 Method 1: Addition of Alkyllithiums to Alkynes [Seite 253]
1.10.1.2.4.1.1 - 8.1.30.4.1.1 Variation 1: Deprotonation [Seite 254]
1.10.1.2.4.1.2 - 8.1.30.4.1.2 Variation 2: Tin-Lithium Exchange [Seite 255]
1.10.1.2.4.1.3 - 8.1.30.4.1.3 Variation 3: Selenium-Lithium Exchange [Seite 257]
1.10.1.2.4.1.4 - 8.1.30.4.1.4 Variation 4: Halogen-Lithium Exchange [Seite 257]
1.10.1.2.4.2 - 8.1.30.4.2 Method 2: Addition of Alkenyllithiums to Alkynes [Seite 258]
1.10.1.2.4.2.1 - 8.1.30.4.2.1 Variation 1: Cyclization of Vinyllithiums onto Alkynes [Seite 258]
1.10.1.2.4.2.2 - 8.1.30.4.2.2 Variation 2: Cyclization of Vinyllithiums onto Arynes [Seite 260]
1.10.1.2.4.3 - 8.1.30.4.3 Method 3: Addition of Aryl- and Hetaryllithiums to Alkynes [Seite 261]
1.10.1.2.4.3.1 - 8.1.30.4.3.1 Variation 1: Cyclization of Aryllithiums onto Alkynes [Seite 262]
1.10.1.2.4.3.2 - 8.1.30.4.3.2 Variation 2: Cyclization of Aryllithiums onto Arynes [Seite 263]
1.10.1.2.5 - 8.1.30.5 Inter- and Intramolecular Addition of Alkyllithiums to Arenes [Seite 265]
1.10.1.2.5.1 - 8.1.30.5.1 Method 1: Intermolecular Dearomatizing Addition of Alkyllithiums to Arenes [Seite 265]
1.10.1.2.5.2 - 8.1.30.5.2 Method 2: Intramolecular Dearomatizing Addition of Alkyllithiums to Arenes [Seite 266]
1.10.1.2.6 - 8.1.30.6 Cascade Reactions [Seite 268]
1.10.1.2.6.1 - 8.1.30.6.1 Method 1: Tandem Intermolecular-Intramolecular Carbolithiations [Seite 268]
1.10.1.2.6.2 - 8.1.30.6.2 Method 2: Tandem Aminolithiation-Carbolithiation [Seite 270]
1.10.1.2.7 - 8.1.30.7 Intermolecular Enantioselective Addition of Organolithiums to Alkenes [Seite 271]
1.10.1.2.7.1 - 8.1.30.7.1 Method 1: Intermolecular Addition of Alkyllithiums to Alkenes [Seite 271]
1.10.1.2.8 - 8.1.30.8 Intramolecular Enantioselective Addition of Organolithiums to Alkenes [Seite 274]
1.10.1.2.8.1 - 8.1.30.8.1 Method 1: Intramolecular Addition of Alkyllithiums to Alkenes [Seite 275]
1.10.1.2.8.2 - 8.1.30.8.2 Method 2: Intramolecular Addition of Aryllithiums to Alkenes [Seite 276]
1.11 - Volume 16: Six-Membered Hetarenes with Two Identical Heteroatoms [Seite 284]
1.11.1 - 16.14 Product Class 14: Pyrazines [Seite 284]
1.11.1.1 - 16.14.5 Pyrazines [Seite 284]
1.11.1.1.1 - 16.14.5.1 Synthesis by Ring-Closure Reactions [Seite 287]
1.11.1.1.1.1 - 16.14.5.1.1 By Formation of Four N--C Bonds [Seite 287]
1.11.1.1.1.1.1 - 16.14.5.1.1.1 Fragments C--C, C--C, and Two N Fragments [Seite 287]
1.11.1.1.1.1.1.1 - 16.14.5.1.1.1.1 Method 1: From a 1,2-Bifunctional Compound and Ammonia or Ammonium [Seite 287]
1.11.1.1.1.2 - 16.14.5.1.2 By Formation of Three N--C Bonds [Seite 288]
1.11.1.1.1.2.1 - 16.14.5.1.2.1 Fragments N--C--C, C--C, and N [Seite 288]
1.11.1.1.1.2.1.1 - 16.14.5.1.2.1.1 Method 1: From an a-Amino Ketone, an a-Hydroxy Ketone, and Ammonium Acetate [Seite 288]
1.11.1.1.1.3 - 16.14.5.1.3 By Formation of Two N--C Bonds [Seite 288]
1.11.1.1.1.3.1 - 16.14.5.1.3.1 Fragments N--C--C--N and C--C [Seite 288]
1.11.1.1.1.3.1.1 - 16.14.5.1.3.1.1 Method 1: From Alkane-1,2-diamines [Seite 288]
1.11.1.1.1.3.1.2 - 16.14.5.1.3.1.2 Method 2: From Alkene-1,2-diamines [Seite 292]
1.11.1.1.1.3.1.3 - 16.14.5.1.3.1.3 Method 3: From a-Amino Amides [Seite 293]
1.11.1.1.1.3.1.4 - 16.14.5.1.3.1.4 Method 4: From a-Amino Nitriles [Seite 294]
1.11.1.1.1.3.1.5 - 16.14.5.1.3.1.5 Method 5: From 1,4-Diazabutadienes [Seite 295]
1.11.1.1.1.3.2 - 16.14.5.1.3.2 Fragments N--C--C and N--C--C [Seite 296]
1.11.1.1.1.3.2.1 - 16.14.5.1.3.2.1 Method 1: By Cyclodimerization of Azirines [Seite 296]
1.11.1.1.1.3.2.2 - 16.14.5.1.3.2.2 Method 2: By Self-Condensation [Seite 297]
1.11.1.1.1.3.2.3 - 16.14.5.1.3.2.3 Method 3: By Condensation of Two Different a-Amino Ketones or Cyanides [Seite 299]
1.11.1.1.1.3.3 - 16.14.5.1.3.3 Fragments C--C--N--C--C and N [Seite 302]
1.11.1.1.1.3.3.1 - 16.14.5.1.3.3.1 Method 1: From ß,ß'-Difunctional Secondary Amines (or Amides) and Ammonia [Seite 302]
1.11.1.1.1.4 - 16.14.5.1.4 By Formation of One N--C Bond [Seite 303]
1.11.1.1.1.4.1 - 16.14.5.1.4.1 Fragment N--C--C--N--C--C [Seite 303]
1.11.1.1.1.4.1.1 - 16.14.5.1.4.1.1 Method 1: Intramolecular Cyclization of a N--C--C--N--C--C Fragment [Seite 303]
1.11.1.1.2 - 16.14.5.2 Synthesis by Ring Transformation [Seite 304]
1.11.1.1.2.1 - 16.14.5.2.1 Method 1: Ring Transformation of Imidazoles [Seite 304]
1.11.1.1.3 - 16.14.5.3 Aromatization [Seite 305]
1.11.1.1.3.1 - 16.14.5.3.1 Method 1: Dehydrogenation of Dihydropyrazines [Seite 305]
1.11.1.1.3.2 - 16.14.5.3.2 Method 2: By Elimination [Seite 306]
1.11.1.1.4 - 16.14.5.4 Synthesis by Substituent Modification [Seite 307]
1.11.1.1.4.1 - 16.14.5.4.1 Substitution of Existing Substituents [Seite 307]
1.11.1.1.4.1.1 - 16.14.5.4.1.1 Of Hydrogen [Seite 307]
1.11.1.1.4.1.1.1 - 16.14.5.4.1.1.1 Method 1: Metalation [Seite 307]
1.11.1.1.4.1.1.2 - 16.14.5.4.1.1.2 Method 2: Acylation, Amidation, Alkylation, and Arylation [Seite 309]
1.11.1.1.4.1.1.2.1 - 16.14.5.4.1.1.2.1 Variation 1: Homolytic Acylation and Amidation [Seite 309]
1.11.1.1.4.1.1.2.2 - 16.14.5.4.1.1.2.2 Variation 2: Direct Alkylation and Arylation [Seite 310]
1.11.1.1.4.1.1.2.3 - 16.14.5.4.1.1.2.3 Variation 3: Alkylation, Arylation, and Alkenylation of Pyrazine N-Oxides [Seite 311]
1.11.1.1.4.1.1.3 - 16.14.5.4.1.1.3 Method 3: Halogenation [Seite 313]
1.11.1.1.4.1.1.3.1 - 16.14.5.4.1.1.3.1 Variation 1: Halogenation of Pyrazinamines [Seite 313]
1.11.1.1.4.1.1.3.2 - 16.14.5.4.1.1.3.2 Variation 2: Halogenation of Pyrazinols [Seite 315]
1.11.1.1.4.1.1.3.3 - 16.14.5.4.1.1.3.3 Variation 3: Deoxidative Chlorination of Pyrazine N-Oxides [Seite 316]
1.11.1.1.4.1.1.4 - 16.14.5.4.1.1.4 Method 4: Nitration [Seite 317]
1.11.1.1.4.1.2 - 16.14.5.4.1.2 Of Metals [Seite 317]
1.11.1.1.4.1.3 - 16.14.5.4.1.3 Of Carbon Functionalities [Seite 319]
1.11.1.1.4.1.3.1 - 16.14.5.4.1.3.1 Method 1: Decarboxylation, Decyanation, and Debenzylation [Seite 319]
1.11.1.1.4.1.4 - 16.14.5.4.1.4 Of Halogen [Seite 320]
1.11.1.1.4.1.4.1 - 16.14.5.4.1.4.1 Method 1: Reduction [Seite 320]
1.11.1.1.4.1.4.2 - 16.14.5.4.1.4.2 Method 2: Metalation [Seite 321]
1.11.1.1.4.1.4.3 - 16.14.5.4.1.4.3 Method 3: Alkylation, Arylation, and Related Reactions [Seite 323]
1.11.1.1.4.1.4.3.1 - 16.14.5.4.1.4.3.1 Variation 1: Grignard Reaction and Related Reactions [Seite 323]
1.11.1.1.4.1.4.3.2 - 16.14.5.4.1.4.3.2 Variation 2: Suzuki-Miyaura Cross-Coupling Reaction and Related Reactions [Seite 324]
1.11.1.1.4.1.4.3.3 - 16.14.5.4.1.4.3.3 Variation 3: Negishi Cross-Coupling Reaction and Related Reactions [Seite 332]
1.11.1.1.4.1.4.3.4 - 16.14.5.4.1.4.3.4 Variation 4: Stille Cross-Coupling Reaction and Related Reactions [Seite 333]
1.11.1.1.4.1.4.3.5 - 16.14.5.4.1.4.3.5 Variation 5: Other Cross-Coupling Reactions for Arylation [Seite 335]
1.11.1.1.4.1.4.4 - 16.14.5.4.1.4.4 Method 4: Alkenylation and Related Reactions [Seite 335]
1.11.1.1.4.1.4.5 - 16.14.5.4.1.4.5 Method 5: Alkynylation and Related Reactions [Seite 338]
1.11.1.1.4.1.4.6 - 16.14.5.4.1.4.6 Method 6: Functionalized Methylation [Seite 339]
1.11.1.1.4.1.4.7 - 16.14.5.4.1.4.7 Method 7: Cyanation and Carbonylation [Seite 341]
1.11.1.1.4.1.4.8 - 16.14.5.4.1.4.8 Method 8: Halogenation [Seite 343]
1.11.1.1.4.1.4.9 - 16.14.5.4.1.4.9 Method 9: Hydroxylation, Alkoxylation, and Sulfanylation [Seite 343]
1.11.1.1.4.1.4.10 - 16.14.5.4.1.4.10 Method 10: Amination, Azidation, and Phosphonation [Seite 347]
1.11.1.1.4.1.5 - 16.14.5.4.1.5 Of Oxygen and Sulfur Functionalities [Seite 351]
1.11.1.1.4.1.5.1 - 16.14.5.4.1.5.1 Method 1: Deoxygenation of N-Oxides and Reductive Removal of Oxygen Functionalities [Seite 351]
1.11.1.1.4.1.5.2 - 16.14.5.4.1.5.2 Method 2: Halogenation [Seite 352]
1.11.1.1.4.1.5.3 - 16.14.5.4.1.5.3 Method 3: O-Sulfonylation [Seite 353]
1.11.1.1.4.1.5.4 - 16.14.5.4.1.5.4 Method 4: Alkylation and Arylation [Seite 354]
1.11.1.1.4.1.6 - 16.14.5.4.1.6 Of Nitrogen Functionalities [Seite 356]
1.11.1.1.4.1.6.1 - 16.14.5.4.1.6.1 Method 1: Halopyrazines, Pyrazinols, and Methoxypyrazines from Aminopyrazines [Seite 32]
1.11.1.1.4.2 - 16.14.5.4.2 Addition Reactions [Seite 356]
1.11.1.1.4.2.1 - 16.14.5.4.2.1 Method 1: N-Alkylation and N-Arylation [Seite 356]
1.11.1.1.4.2.2 - 16.14.5.4.2.2 Method 2: N-Oxidation [Seite 358]
1.11.1.1.4.3 - 16.14.5.4.3 Rearrangement of Substituents [Seite 359]
1.11.1.1.4.3.1 - 16.14.5.4.3.1 Method 1: Hofmann or Curtius Rearrangement [Seite 359]
1.11.1.1.4.4 - 16.14.5.4.4 Modification of Substituents [Seite 359]
1.11.1.1.4.4.1 - 16.14.5.4.4.1 Method 1: Degradation of Condensed Pyrazines [Seite 359]
1.11.1.1.4.4.2 - 16.14.5.4.4.2 Method 2: Modification of Carbon Substituents [Seite 361]
1.11.1.1.4.4.3 - 16.14.5.4.4.3 Method 3: Modification of Nitrogen and Chalcogen Substituents [Seite 365]
1.12 - Volume 17: Six-Membered Hetarenes with Two Unlike or More than Two Heteroatoms and Fully Unsaturated Larger-Ring Heterocycles [Seite 376]
1.12.1 - 17.3 Product Class 3: Six-Membered Hetarenes with More than Three Heteroatoms [Seite 376]
1.12.1.1 - 17.3.4 Six-Membered Hetarenes with More than Three Heteroatoms [Seite 376]
1.12.1.1.1 - 17.3.4.1 1,2,3,4-Tetrazines [Seite 376]
1.12.1.1.1.1 - 17.3.4.1.1 Method 1: Synthesis of 1,2,3,4-Tetrazine N-Oxides [Seite 377]
1.12.1.1.1.1.1 - 17.3.4.1.1.1 Variation 1: Via Nitration [Seite 377]
1.12.1.1.2 - 17.3.4.2 1,2,3,5-Tetrazines [Seite 379]
1.12.1.1.3 - 17.3.4.3 1,2,4,5-Tetrazines [Seite 379]
1.12.1.1.3.1 - 17.3.4.3.1 Synthesis by Ring-Closure Reactions [Seite 380]
1.12.1.1.3.1.1 - 17.3.4.3.1.1 By Formation of Four N--C Bonds [Seite 380]
1.12.1.1.3.1.1.1 - 17.3.4.3.1.1.1 Fragments N--N, N--N, and Two C Fragments [Seite 380]
1.12.1.1.3.1.1.1.1 - 17.3.4.3.1.1.1.1 Method 1: Dimerization of Activated Hydrazidic Acid Derivatives [Seite 380]
1.12.1.1.3.1.1.1.1.1 - 17.3.4.3.1.1.1.1.1 Variation 1: From Nitriles [Seite 380]
1.12.1.1.3.1.1.1.1.2 - 17.3.4.3.1.1.1.1.2 Variation 2: From Carboxylic Acid Derivatives [Seite 383]
1.12.1.1.3.1.2 - 17.3.4.3.1.2 By Formation of Two N--C Bonds [Seite 385]
1.12.1.1.3.1.2.1 - 17.3.4.3.1.2.1 Fragments C--N--N--C and N--N [Seite 385]
1.12.1.1.3.1.2.1.1 - 17.3.4.3.1.2.1.1 Method 1: Oxidation of Dihydrotetrazines [Seite 385]
1.12.1.1.3.2 - 17.3.4.3.2 Aromatization [Seite 385]
1.12.1.1.3.3 - 17.3.4.3.3 Synthesis by Substituent Modification [Seite 385]
1.12.1.1.3.3.1 - 17.3.4.3.3.1 Substitution of Existing Substituents [Seite 385]
1.12.1.1.3.3.1.1 - 17.3.4.3.3.1.1 Of Heteroatoms [Seite 385]
1.12.1.1.3.3.1.1.1 - 17.3.4.3.3.1.1.1 Method 1: Substitution of Halogen Substituents [Seite 386]
1.12.1.1.3.3.1.1.1.1 - 17.3.4.3.3.1.1.1.1 Variation 1: Nucleophilic Aromatic Substitution [Seite 386]
1.12.1.1.3.3.1.1.1.2 - 17.3.4.3.3.1.1.1.2 Variation 2: Palladium-Catalyzed Coupling [Seite 392]
1.12.1.1.3.3.1.1.2 - 17.3.4.3.3.1.1.2 Method 2: Substitution of Sulfur Substituents [Seite 393]
1.12.1.1.3.3.1.1.2.1 - 17.3.4.3.3.1.1.2.1 Variation 1: Nucleophilic Substitution [Seite 393]
1.12.1.1.3.3.1.1.2.2 - 17.3.4.3.3.1.1.2.2 Variation 2: Palladium-Catalyzed Coupling [Seite 393]
1.12.1.1.3.3.1.1.3 - 17.3.4.3.3.1.1.3 Method 3: Substitution of Nitrogen Substituents [Seite 395]
1.12.1.1.3.3.2 - 17.3.4.3.3.2 Modification of Substituents [Seite 401]
1.13 - Volume 19: Three Carbon--Heteroatom Bonds: Nitriles, Isocyanides, and Derivatives [Seite 408]
1.13.1 - 19.5 Product Class 5: Nitriles [Seite 408]
1.13.1.1 - 19.5.16 Asymmetric Synthesis of Nitriles [Seite 408]
1.13.1.1.1 - 19.5.16.1 Introduction of the Cyano Group by Addition to a Carbonyl Group [Seite 408]
1.13.1.1.1.1 - 19.5.16.1.1 Method 1: Catalytic Asymmetric Cyanation of Aldehydes [Seite 408]
1.13.1.1.1.1.1 - 19.5.16.1.1.1 Variation 1: Use of Enzymes [Seite 408]
1.13.1.1.1.1.2 - 19.5.16.1.1.2 Variation 2: Use of Chiral Titanium Complexes as Catalysts [Seite 409]
1.13.1.1.1.1.3 - 19.5.16.1.1.3 Variation 3: Use of Chiral Aluminum Complexes as Catalysts [Seite 414]
1.13.1.1.1.1.4 - 19.5.16.1.1.4 Variation 4: Use of Chiral Yttrium Complexes as Catalysts [Seite 417]
1.13.1.1.1.1.5 - 19.5.16.1.1.5 Variation 5: Use of Chiral Ruthenium Complexes as Catalysts [Seite 418]
1.13.1.1.1.1.6 - 19.5.16.1.1.6 Variation 6: Use of Chiral Boron-Based Catalysts [Seite 419]
1.13.1.1.1.1.7 - 19.5.16.1.1.7 Variation 7: Use of Chiral Vanadium-Based Catalysts [Seite 420]
1.13.1.1.1.1.8 - 19.5.16.1.1.8 Variation 8: Use of Chiral Bases as Catalysts [Seite 422]
1.13.1.1.1.2 - 19.5.16.1.2 Method 2: Catalytic Asymmetric Cyanation of Ketones [Seite 425]
1.13.1.1.1.2.1 - 19.5.16.1.2.1 Variation 1: Use of Enzymes [Seite 425]
1.13.1.1.1.2.2 - 19.5.16.1.2.2 Variation 2: Use of Chiral Titanium Complexes as Catalysts [Seite 426]
1.13.1.1.1.2.3 - 19.5.16.1.2.3 Variation 3: Use of Chiral Aluminum Complexes as Catalysts [Seite 427]
1.13.1.1.1.2.4 - 19.5.16.1.2.4 Variation 4: Use of a Chiral Gadolinium Complex as Catalyst [Seite 430]
1.13.1.1.1.2.5 - 19.5.16.1.2.5 Variation 5: Use of Chiral Ruthenium Complexes as Catalysts [Seite 430]
1.13.1.1.1.2.6 - 19.5.16.1.2.6 Variation 6: Use of Chiral Organic Salts [Seite 431]
1.13.1.1.1.2.7 - 19.5.16.1.2.7 Variation 7: Use of Chiral Organocatalysts [Seite 433]
1.13.1.1.2 - 19.5.16.2 Introduction of the Cyano Group by Addition to an Imino Group [Seite 437]
1.13.1.1.2.1 - 19.5.16.2.1 Asymmetric Synthesis of a-Aminonitriles Derived from Aldimines [Seite 437]
1.13.1.1.2.1.1 - 19.5.16.2.1.1 Method 1: Asymmetric Strecker Reactions with Chiral Auxiliaries [Seite 437]
1.13.1.1.2.1.1.1 - 19.5.16.2.1.1.1 Variation 1: Use of Chiral Sulfinamides [Seite 437]
1.13.1.1.2.1.1.2 - 19.5.16.2.1.1.2 Variation 2: Use of Chiral Hydrazones [Seite 438]
1.13.1.1.2.1.2 - 19.5.16.2.1.2 Method 2: Catalytic Asymmetric Cyanation of Aldimines [Seite 439]
1.13.1.1.2.1.2.1 - 19.5.16.2.1.2.1 Variation 1: Use of Chiral Aluminum Complexes as Catalysts [Seite 32]
1.13.1.1.2.1.2.2 - 19.5.16.2.1.2.2 Variation 2: Use of Chiral Titanium Complexes as Catalysts [Seite 441]
1.13.1.1.2.1.2.3 - 19.5.16.2.1.2.3 Variation 3: Use of Chiral Lanthanide Complexes as Catalysts [Seite 443]
1.13.1.1.2.1.2.4 - 19.5.16.2.1.2.4 Variation 4: Use of Chiral Thioureas as Catalysts [Seite 32]
1.13.1.1.2.1.2.5 - 19.5.16.2.1.2.5 Variation 5: Use of Chiral BINOL-Phosphoric Acids as Catalysts [Seite 446]
1.13.1.1.2.1.2.6 - 19.5.16.2.1.2.6 Variation 6: Use of Chiral Quaternary Ammonium Salts as Catalysts [Seite 32]
1.13.1.1.2.1.2.7 - 19.5.16.2.1.2.7 Variation 7: Use of a Chiral Bisformamide as Catalyst [Seite 449]
1.13.1.1.2.1.2.8 - 19.5.16.2.1.2.8 Variation 8: Use of a Chiral N,N'-Dioxide as Catalyst [Seite 450]
1.13.1.1.2.2 - 19.5.16.2.2 Asymmetric Synthesis of a-Aminonitriles Derived from Ketimines [Seite 451]
1.13.1.1.2.2.1 - 19.5.16.2.2.1 Method 1: Asymmetric Strecker Reactions with Chiral Auxiliaries [Seite 451]
1.13.1.1.2.2.1.1 - 19.5.16.2.2.1.1 Variation 1: Use of Chiral Sulfinamides [Seite 451]
1.13.1.1.2.2.2 - 19.5.16.2.2.2 Method 2: Catalytic Asymmetric Cyanation of Ketimines [Seite 452]
1.13.1.1.2.2.2.1 - 19.5.16.2.2.2.1 Variation 1: Use of Chiral Thioureas as Catalysts [Seite 452]
1.13.1.1.2.2.2.2 - 19.5.16.2.2.2.2 Variation 2: Use of Chiral Titanium Complexes as Catalysts [Seite 453]
1.13.1.1.2.2.2.3 - 19.5.16.2.2.2.3 Variation 3: Use of Chiral Gadolinium Complexes as Catalysts [Seite 454]
1.13.1.1.2.2.2.4 - 19.5.16.2.2.2.4 Variation 4: Use of Chiral N,N'-Dioxides as Catalysts [Seite 455]
1.13.1.1.2.2.2.5 - 19.5.16.2.2.2.5 Variation 5: Use of Chiral Sodium 1,1'-Binaphthalene-2,2'-diyl Phosphate as Catalyst [Seite 457]
1.13.1.1.3 - 19.5.16.3 Introduction of the Cyano Group by Conjugate Addition [Seite 458]
1.13.1.1.3.1 - 19.5.16.3.1 Method 1: Use of a Chiral Auxiliary [Seite 459]
1.13.1.1.3.2 - 19.5.16.3.2 Method 2: Use of Chiral Aluminum Complexes as Catalysts [Seite 460]
1.13.1.1.3.3 - 19.5.16.3.3 Method 3: Use of Chiral Gadolinium Complexes as Catalysts [Seite 461]
1.13.1.1.3.4 - 19.5.16.3.4 Method 4: Use of Chiral Strontium Complexes as Catalysts [Seite 465]
1.13.1.1.3.5 - 19.5.16.3.5 Method 5: Use of Chiral Titanium Complexes as Catalysts [Seite 466]
1.13.1.1.3.6 - 19.5.16.3.6 Method 6: Use of Chiral Ruthenium Complexes as Catalysts [Seite 467]
1.13.1.1.3.7 - 19.5.16.3.7 Method 7: Use of Chiral Organic Salts [Seite 468]
1.13.1.1.4 - 19.5.16.4 Introduction of the Cyano Group by Hydrocyanation of Alkenes [Seite 471]
1.13.1.1.4.1 - 19.5.16.4.1 Method 1: Use of Chiral Nickel Complexes as Catalysts [Seite 471]
1.14 - Volume 27: Heteroatom Analogues of Aldehydes and Ketones [Seite 476]
1.14.1 - 27.15 Product Class 15: Oximes [Seite 476]
1.14.1.1 - 27.15.1 Synthesis of Product Class 15 [Seite 476]
1.14.1.1.1 - 27.15.1.1 Method 1: Condensation of Carbonyl Compounds and Hydroxylamine [Seite 476]
1.14.1.1.2 - 27.15.1.2 Method 2: Nitrosation [Seite 477]
1.14.1.1.2.1 - 27.15.1.2.1 Variation 1: Electrophilic Nitrosation of Active Methylene Compounds [Seite 478]
1.14.1.1.2.2 - 27.15.1.2.2 Variation 2: Electrophilic Nitrosation of Alkenes [Seite 479]
1.14.1.1.2.3 - 27.15.1.2.3 Variation 3: Radical Nitrosation [Seite 480]
1.14.1.1.3 - 27.15.1.3 Method 3: Oxidation of Amino Compounds [Seite 481]
1.14.1.1.3.1 - 27.15.1.3.1 Variation 1: Oxidation of Hydroxylamines [Seite 481]
1.14.1.1.3.2 - 27.15.1.3.2 Variation 2: Oxidation of Primary Amines [Seite 482]
1.14.1.1.4 - 27.15.1.4 Method 4: Reduction of Nitro and Nitroso Compounds [Seite 483]
1.14.1.1.4.1 - 27.15.1.4.1 Variation 1: Reduction of Nitroalkanes [Seite 483]
1.14.1.1.4.2 - 27.15.1.4.2 Variation 2: Reduction of Conjugated Nitroalkenes [Seite 485]
1.14.1.1.4.3 - 27.15.1.4.3 Variation 3: Reduction of gem-Chloronitroso Compounds [Seite 485]
1.14.1.1.5 - 27.15.1.5 Method 5: Additional Methods [Seite 486]
1.14.1.2 - 27.15.2 Applications of Product Class 15 in Organic Synthesis [Seite 488]
1.14.1.2.1 - 27.15.2.1 Method 1: Formal Substitution with Cleavage of the O--N Bond [Seite 488]
1.14.1.2.1.1 - 27.15.2.1.1 Variation 1: Via Oxidative Addition to Transition Metals [Seite 489]
1.14.1.2.1.2 - 27.15.2.1.2 Variation 2: With Nucleophiles [Seite 491]
1.14.1.2.1.3 - 27.15.2.1.3 Variation 3: Via Radical Intermediates [Seite 494]
1.14.1.2.2 - 27.15.2.2 Method 2: Formal Elimination [Seite 497]
1.14.1.2.2.1 - 27.15.2.2.1 Variation 1: Generation of 1,3-Dipoles [Seite 497]
1.14.1.2.2.2 - 27.15.2.2.2 Variation 2: Conversion into Nitriles [Seite 499]
1.14.1.2.2.3 - 27.15.2.2.3 Variation 3: Regeneration of Carbonyl Compounds [Seite 501]
1.14.1.2.3 - 27.15.2.3 Method 3: Addition Reactions [Seite 502]
1.14.1.2.3.1 - 27.15.2.3.1 Variation 1: Reduction to Primary Amines [Seite 502]
1.14.1.2.3.2 - 27.15.2.3.2 Variation 2: Reduction to Hydroxylamines [Seite 503]
1.14.1.2.3.3 - 27.15.2.3.3 Variation 3: With Radicals [Seite 504]
1.14.1.2.3.4 - 27.15.2.3.4 Variation 4: With Carbon Nucleophiles [Seite 505]
1.14.1.2.4 - 27.15.2.4 Method 4: Rearrangements [Seite 506]
1.14.1.2.4.1 - 27.15.2.4.1 Variation 1: Beckmann Rearrangement [Seite 506]
1.14.1.2.4.2 - 27.15.2.4.2 Variation 2: Neber Reaction [Seite 509]
1.14.1.2.5 - 27.15.2.5 Method 5: Reactions with Retention of the Oxime Moiety [Seite 510]
1.14.1.2.5.1 - 27.15.2.5.1 Variation 1: E/Z-Isomerization [Seite 510]
1.14.1.2.5.2 - 27.15.2.5.2 Variation 2: a-Alkylation [Seite 511]
1.14.1.2.5.3 - 27.15.2.5.3 Variation 3: Radical Reactions of Sulfonyloxime Ethers [Seite 512]
1.14.1.2.6 - 27.15.2.6 Method 6: Directing Group for C--H Functionalization [Seite 513]
1.14.1.2.7 - 27.15.2.7 Method 7: Additional Reactions [Seite 517]
1.15 - Author Index [Seite 532]
1.16 - Abbreviations [Seite 564]
1.17 - List of All Volumes [Seite 570]
2.12.15 Organometallic Complexes of Scandium, Yttrium, and the Lanthanides (Update 2011)
P. Dissanayake, D. J. Averill, and M. J. Allen
2.12.15.1 Lanthanide-Catalyzed Mukaiyama Aldol Reactions
This chapter summarizes the use of lanthanide-containing catalysts for Mukaiyama aldol reactions since 1987. In this chapter, reactions are categorized as follows: (1) non-enantio-selective formation of β-hydroxycarbonyls (▶ Section 2.12.15.1.1), (2) enantioselective formation of β-hydroxycarbonyls in an organic solvent (▶ Section 2.12.15.1.2.1), and (3) enantioselective formation of β-hydroxycarbonyls in an aqueous solvent (▶ Section 2.12.15.1.2.2).
2.12.15.1.1 Method 1: Non-enantioselective Formation of β-Hydroxycarbonyls
Lanthanide-catalyzed Mukaiyama aldol reactions between aldehydes 1 and the methyl trimethylsilyl acetal 2, to obtain Mukaiyama aldol products 3, were first reported using lanthanide(III) chlorides (▶ Scheme 1).[1] Furthermore, the reactions also proceed smoothly at room temperature when lanthanide(III) bromides are used as catalysts.[2] In addition to lanthanides in the +3 oxidation state, samarium(II) iodide can also be used as an efficient catalyst for this reaction, and the samarium(II) iodide precatalyst is stable enough to be stored under argon without oxidation (▶ Scheme 1).[3]
▶ Scheme 1 Mukaiyama Aldol Reactions Catalyzed by Lanthanide Catalysts[1]
R1 Catalyst Temp (°C) Time Yield
a (%) Ref 3 4 Ph SmCl3 rt 12 h 66 28 [
1] Ph CeCl3 rt 24 h 61 27 [
1] Ph LaCl3 rt 4 d 21 42 [
1] (CH2)4Me SmCl3 rt 36 h 47 16 [
1] 4-MeOC6H4 LnBr3 (THF)2.6 rt 2 h
b,
c 86 n.r. [
2] 3-O2NC6H4 LnBr3 (THF)2.6 rt 4 h
b,
d n.r. 83 [
2] 4-MeOC6H4 SmI2 (THF)2 –78 5 min 95 n.r. [
3] 4-MeOC6H4 SmI3 (THF)3 –78 5 min 95 n.r. [
3] Ph SmI2(THF)2 –78 5 min 95 n.r. [
3] (CH2)6Me SmI2(THF)2 –20 4.5 h 90 n.r. [
3] a n.r. = not reported. b Catalyst prepared from mischmetal. c LnBr3 (THF)2.6 (20 mol%). d LnBr3 (THF)2.6 (10 mol%).
Another variation of the lanthanide-catalyzed Mukaiyama aldol reaction is carried out in aqueous media using a catalytic amount of ytterbium(III) trifluoromethanesulfonate. These aqueous reactions between formaldehyde and silyl enol ethers 5 yield hydroxymethylated adducts 6 as shown in ▶ Scheme 2.[4]
▶ Scheme 2 Mukaiyama Aldol Reactions Catalyzed by Ytterbium(III) Trifluoromethanesulfonate under Aqueous Conditions[4]
R1 R2 R3 Yield (%) Ref Me H Ph 94 [
4] H Me Et 85 [
4] H (CH2)3CHMe 86
a [
4] Me (CH2)4 92 [
4] iPr H Ph 92 [
4] Me 90
b [
4] a dr 3:2. b dr (
anti/syn) 9:1.
In addition to using cosolvents with water, lanthanide Lewis acid–surfactant combined precatalysts are used for Mukaiyama aldol reactions in water (▶ Schemes 3 and 4).[5,6] The reaction between benzaldehyde and silyl enol ether 7 to yield aldol adduct 8 (▶ Scheme 3) suggests that the amount of surfactant, sodium dodecyl sulfate, influences the reaction yield. The aqueous Mukaiyama aldol reactions of α,β-epoxyaldehydes 9 with silyl enol ether 10 to yield adducts 11 have also been reported using sodium dodecyl sulfate (▶ Scheme 4).[6]
▶ Scheme 3 Mukaiyama Aldol Reaction Catalyzed by an Ytterbium(III) Trifluoromethanesulfonate–Surfactant Combined Precatalyst[5]
Sodium Dodecyl Sulfate (equiv) Yield (%) Ref 0 17 [
5] 0.04 12 [
5] 0.1 19 [
5] 0.2 50 [
5] 1.0 22 [
5]
▶ Scheme 4 Mukaiyama Aldol Reactions Catalyzed by Lanthanide(III) Trifluoromethanesulfonate–Surfactant Combined Precatalysts[6]
R1 R2 Ln(OTf)3 dr (
anti/
syn) Yield (%) Ref H CH2OTBDPS Eu(OTf)3 90:10 25 [
6] H CH2OTBDPS La(OTf)3 91:9 46 [
6] H CH2OTBDPS Yb(OTf)3 94:6 33 [
6] CH2OTBDPS H La(OTf)3 67:33 33 [
6] H OBn La(OTf)3 90:10 35
a [
6] a Starting material was used as a racemic mixture of
R,
R- and
S,
S-stereoisomers.
Methyl 2,2-Dimethyl-3-(trimethylsiloxy)alkanoates 3 and Methyl 3-Hydroxy-2,2-dimethylalkanoates 4; General Procedure Using Lanthanide(III) Chlorides or Bromides:[1,2]
Aldehyde 1 and silyl enol ether 2 were added to a suspension of LnX3 (0.05 or 0.10 equiv) in CH2Cl2 under argon at ambient temperature. After the reaction was complete the solvent was removed under reduced pressure. The crude material obtained was purified by flash chromatography (silica gel).
Methyl 2,2-Dimethyl-3-(trimethylsiloxy)alkanoates 3 and Methyl 3-Hydroxy-2,2-dimethylalkanoates 4; General Procedure Using Samarium(II) or Samarium (III) Iodide:[3]
Methods A and B allow the preparation of β-hydroxycarbonyls 4 using SmI2. Method B is preferred when silyl ethers 3 are desired.
Method A: A 0.10 M soln of SmI2 in THF (1.0 mL) was concentrated under reduced pressure to give SmI2 (THF)2 as a blue powder. Alternatively, SmI2 (THF)2 (55 mg, 0.10 mmol) was weighed in a glovebox. This precatalyst, or SmI3 (THF)3 if desired, was suspended in CH2Cl2 (5 mL), and silyl acetal 2 (2.2–3.0 mmol) was added followed by the aldehyde 1 (2.0 mmol). The resulting yellow soln was stirred under argon. The mixture was hydrolyzed with 0.1 M HCl (5 mL) and extracted with Et2O. The extracts were washed with H2O and dried (MgSO4). After removal of the solvent, the product was purified by flash chromatography (silica gel).
Method B: Method A was followed, but instead of adding HCl the reaction was stopped by the addition of hexane (50 mL), which precipitated samarium salts. After filtration through Celite, the solvents were removed under reduced pressure, and purification by flash chromatography (silica gel) afforded the desired product.
3-Hydroxycarbonyl Compounds 6; General Procedure:[4]
CAUTION:
Formaldehyde is a probable human carcinogen, a severe eye, skin, and respiratory tract irritant, and a skin sensitizer.
To a...