1 - Contents [Seite 5]
2 - Requirements for Ignition Systems [Seite 8]
3 - Challenges to the Ignition System of Future Gasoline Engines - An Application Oriented Systems Comparison [Seite 9]
3.1 - Abstract [Seite 9]
3.2 - 1 Introduction [Seite 9]
3.3 - 2 Challenges to Ignitions Systems Within the Engine Map [Seite 10]
3.4 - 3 Test Setup and Procedure [Seite 13]
3.4.1 - 3.1 Engines for Thermodynamic Testing [Seite 13]
3.4.2 - 3.2 Ignition Systems [Seite 13]
3.5 - 4 Results [Seite 15]
3.5.1 - 4.1 Potentials in Part Load [Seite 15]
3.5.2 - 4.2 Potentials in Upper Part Load [Seite 21]
3.5.3 - 4.3 Potentials at High Load [Seite 22]
3.5.4 - 4.4 Transient Behavior [Seite 26]
3.5.5 - 4.5 Functional Integration Aspects [Seite 28]
3.6 - 5 Conclusion [Seite 30]
3.7 - Acknowledgements [Seite 31]
3.8 - References [Seite 31]
4 - Extension of Operating Window for Modern Combustion Systems by High Performance Ignition [Seite 32]
4.1 - Abstract [Seite 32]
4.2 - 1 Introduction [Seite 32]
4.3 - 2 Requirements on Ignition System for Modern Combustion Concepts [Seite 35]
4.3.1 - 2.1 Requirements for Efficient Combustion [Seite 35]
4.3.2 - 2.2 Derived Component Requirements [Seite 39]
4.3.3 - 2.3 Requirements Development vs. Ignition Solutions [Seite 41]
4.4 - 3 CEI Working Principle and Sample Status [Seite 42]
4.4.1 - 3.1 CEI Working Principle [Seite 42]
4.4.2 - 3.2 CEI Sample Status and Performance Measurement Results [Seite 45]
4.5 - 4 Engine Results [Seite 47]
4.5.1 - 4.1 Potential Study for EGR Combustion Concepts [Seite 48]
4.5.2 - 4.2 Potential Study for Lean Combustion Concepts [Seite 53]
4.6 - 5 Summary [Seite 55]
4.7 - References [Seite 56]
5 - Demonstration of Improved Dilution Tolerance Using a Production-Intent Compact Nanosecond Pulse Ignition System [Seite 58]
5.1 - Abstract [Seite 58]
5.2 - 1 Introduction [Seite 59]
5.2.1 - 1.1 Technical Approach [Seite 59]
5.3 - 2 Ignition System [Seite 63]
5.3.1 - 2.1 Ignition Module [Seite 64]
5.3.2 - 2.2 Measurement [Seite 64]
5.4 - 3 Experimental Setup [Seite 64]
5.5 - 4 Results [Seite 65]
5.6 - 5 Discussion [Seite 68]
5.7 - 6 Conclusion [Seite 69]
5.8 - Acknowledgements [Seite 70]
5.9 - References [Seite 70]
6 - Operating Conditions/Flammability [Seite 72]
7 - Study of Ignitability in Strong Flow Field [Seite 73]
7.1 - Abstract [Seite 73]
7.2 - 1 Introduction [Seite 73]
7.3 - 2 Direction of the Study [Seite 75]
7.4 - 3 Analysis of Discharge Channel Behavior and Initial Flame Propagation in Strong Flow Fields [Seite 75]
7.4.1 - 3.1 Effect of Strong Flow Fields on Ignitability [Seite 75]
7.4.2 - 3.2 Analysis of Misfire Mechanism [Seite 77]
7.5 - 4 Effect of Discharge Specifications on Discharge Channel Behavior and Initial Flame Propagation [Seite 81]
7.5.1 - 4.1 Effect of Discharge Current and Duration [Seite 81]
7.5.2 - 4.2 Optimizing Discharge Specifications [Seite 85]
7.6 - 5 Conclusion [Seite 86]
7.7 - Acknowledgment [Seite 87]
7.8 - References [Seite 87]
8 - Simulation of Ignition [Seite 89]
9 - Simulating Extreme Lean Gasoline Combustion - Flow Effects on Ignition [Seite 90]
9.1 - Abstract [Seite 90]
9.2 - 1 Introduction [Seite 90]
9.3 - 2 Challenges of Lean Burn Combustion [Seite 91]
9.4 - 3 Experimental Study on Lean Burn Combustion [Seite 93]
9.4.1 - 3.1 Test Bench Setup and Instrumentation [Seite 93]
9.4.2 - 3.2 Thermodynamic Engine Testing [Seite 95]
9.5 - 4 Lean Mixtures Ignition and Combustion Model [Seite 96]
9.6 - 5 Extreme Lean Concept Study [Seite 100]
9.6.1 - 5.1 Charge Motion Design [Seite 100]
9.6.2 - 5.2 Predictive 1D-Model [Seite 102]
9.6.3 - 5.3 Extreme Lean Concept Study [Seite 103]
9.7 - 6 Conclusion and Outlook [Seite 106]
9.8 - References [Seite 107]
10 - New Ignition Systems 1 [Seite 109]
11 - High Energy Multipole Distribution Spark Ignition System [Seite 110]
11.1 - Abstract [Seite 110]
11.2 - 1 Introduction [Seite 110]
11.3 - 2 Experimental Setups [Seite 113]
11.3.1 - 2.1 Three-pole Spark Plug and Ignition System Configurations [Seite 113]
11.3.2 - 2.2 Constant Volume Combustion Vessels [Seite 115]
11.3.3 - 2.3 Single-Cylinder Engine Dynamometer Test [Seite 117]
11.4 - 3 Results and Discussions [Seite 118]
11.4.1 - 3.1 Evaluation on the Constant Volume Combustion Vessels [Seite 118]
11.4.2 - 3.2 Evaluation on the Single Cylinder Engine [Seite 123]
11.5 - 4 Future Works [Seite 129]
11.6 - 5 Conclusions [Seite 129]
11.7 - Acknowledgements [Seite 130]
11.8 - References [Seite 130]
12 - Development of Homogeneous Charged Multi-point Ignition Engine [Seite 132]
12.1 - Abstract [Seite 132]
12.2 - 1 Introduction [Seite 132]
12.3 - 2 System Configuration of Multi-point Ignition [Seite 133]
12.4 - 3 Realization of Fast Combustion by Multi-point Ignition [Seite 134]
12.5 - 4 Performance Evaluation of a Multi-point Ignition Engine [Seite 135]
12.5.1 - 4.1 Retardation of Ignition Timing [Seite 135]
12.5.2 - 4.2 Realization of Lean Combustion [Seite 136]
12.5.3 - 4.3 Realization of High Compression Ratio by a Multi-point Ignition [Seite 137]
12.6 - 5 Consideration of the Effect of Thermal Efficiency Improvement by Multi-point Ignition [Seite 137]
12.7 - 6 Conclusion [Seite 140]
12.8 - 7 Closing Remark [Seite 140]
12.9 - Reference [Seite 140]
13 - Development of an Ignition Coil Integrated System to Monitor the Spark Plugs Wear [Seite 141]
13.1 - Abstract [Seite 141]
13.2 - 1 Introduction [Seite 141]
13.3 - 2 Ignition Process [Seite 143]
13.4 - 3 Breakdown Voltage Determinant Factors [Seite 144]
13.4.1 - 3.1 Paschen Law [Seite 145]
13.5 - 4 Microcontroller-Based Ignition Control [Seite 146]
13.5.1 - 4.1 Indirect Measurement of Breakdown Voltage [Seite 147]
13.6 - 5 Conclusions [Seite 151]
13.7 - References [Seite 151]
14 - Components [Seite 153]
15 - Fatigue Life Simulation and Analysis of an Ignition Coil [Seite 154]
15.1 - Abstract [Seite 154]
15.2 - 1 Introduction [Seite 154]
15.3 - 2 Ignition Coil [Seite 155]
15.4 - 3 Thermal Fatigue and Durability of Primary Wire [Seite 156]
15.5 - 4 Assembly Loads and In-Service Thermal Operating Conditions [Seite 156]
15.6 - 5 Computer Simulation Modelling and Analysis for Predicting Thermal Fatigue Durability [Seite 158]
15.6.1 - 5.1 Simulating Primary Wire Assembly [Seite 158]
15.6.2 - 5.2 Simulating in-Service Thermal Cycling of Coil Assembly [Seite 159]
15.6.3 - 5.3 Thermal Fatigue Life Evaluation of the Primary Wire [Seite 161]
15.7 - 6 Lab Test Results and Comparison with Simulation Results [Seite 162]
15.8 - 7 Conclusions [Seite 163]
15.9 - Acknowledgments [Seite 164]
15.10 - References [Seite 164]
16 - Visualization of Ignition Processes [Seite 165]
17 - Calorimetry and Atomic Oxygen Laser-Induced Fluorescence of Pulsed Nanosecond Discharges at Above-Atmospheric Pressures [Seite 166]
17.1 - Abstract [Seite 166]
17.2 - 1 Introduction [Seite 166]
17.3 - 2 Experiment Description [Seite 169]
17.3.1 - 2.1 Pressure-Rise Calorimetry [Seite 169]
17.3.2 - 2.2 O-Atom Two-Photon Laser Induced Fluorescence [Seite 171]
17.4 - 3 Results and Discussion [Seite 172]
17.4.1 - 3.1 Pressure-Rise Calorimetry [Seite 172]
17.4.2 - 3.2 LTP Two-Photon Laser Induced Fluorescence [Seite 178]
17.4.3 - 3.3 Discussion [Seite 180]
17.5 - 4 Conclusions [Seite 182]
17.6 - Acknowledgements [Seite 183]
17.7 - References [Seite 184]
18 - Comparing Visualization of Inflammation at Transient Load Steps Comparing Ignition Systems [Seite 187]
18.1 - Abstract [Seite 187]
18.2 - 1 Introduction [Seite 187]
18.3 - 2 Experimental Setup [Seite 188]
18.3.1 - 2.1 Requirements for Engine Testing in Transient Operation [Seite 188]
18.3.2 - 2.2 Engine in the Loop as Test Bed with Synchronized Measurements [Seite 188]
18.4 - 3 Investigated Transient Processes [Seite 190]
18.5 - 4 Camera Measurements of Chemiluminescence as Tool for Flame Kernel Investigation [Seite 191]
18.6 - 5 Measurement Results [Seite 195]
18.6.1 - 5.1 Comparison OH*Chemiluminescence and Visual Light [Seite 195]
18.6.2 - 5.2 CH* and C2* Results [Seite 196]
18.6.3 - 5.3 Results for Early Engine Cycles in Transient Load Step [Seite 197]
18.7 - 6 Summary and Discussion [Seite 199]
18.8 - Acknowledgements [Seite 200]
18.9 - References [Seite 200]
19 - Spark Control for Ion Current Sensing [Seite 201]
19.1 - Abstract [Seite 201]
19.2 - 1 Ion Current Sensing for Combustion Analyses [Seite 201]
19.3 - 2 Ion Current Sensing Using Inductive Ignition Systems [Seite 205]
19.4 - 3 Spark Control [Seite 208]
19.5 - 4 Summary [Seite 210]
19.6 - References [Seite 210]
20 - Combustion Processes [Seite 211]
21 - Ignition System Development for High Speed High Load Lean Boosted Engines [Seite 212]
21.1 - Abstract [Seite 212]
21.2 - 1 Background [Seite 212]
21.3 - 2 Lean Boosting [Seite 214]
21.4 - 3 2013 4-Cylinder Concept [Seite 215]
21.4.1 - 3.1 Functionality Issues [Seite 215]
21.4.2 - 3.2 Ignitability Tradeoffs with Breakdown Voltage [Seite 217]
21.5 - 4 Initial 2014 Concept Testing [Seite 220]
21.5.1 - 4.1 Impact of Regulation Change on Ignition System [Seite 220]
21.5.2 - 4.2 Ignition Coil Emulator Testing: Round 1 [Seite 220]
21.5.3 - 4.3 Ignition Coil Emulator Testing: Round 2 [Seite 223]
21.5.4 - 4.4 Further Plug Geometry Testing [Seite 227]
21.5.5 - 4.5 Effect of Spark Plug Penetration [Seite 229]
21.6 - 5 Endoscopic Flame Kernel Measurements [Seite 230]
21.7 - 6 Multispark Testing [Seite 232]
21.8 - 7 Importance of Early Burn Duration [Seite 234]
21.9 - 8 Conclusions [Seite 236]
21.10 - References [Seite 237]
22 - New Ignition Systems 2 [Seite 238]
23 - Effects of Microwave-Enhanced Plasma on Laser Ignition [Seite 239]
23.1 - Abstract [Seite 239]
23.2 - 1 Introduction [Seite 239]
23.3 - 2 Experimental Setup and Method [Seite 240]
23.4 - 3 Results and Discussion [Seite 242]
23.4.1 - 3.1 Effect of Microwave-Enhancement on the Laser Ignition [Seite 242]
23.4.2 - 3.2 Effect of the Total Duration Time of Microwave Enhancement and the Effect of Duty Ratio on the Microwave-Enhanced Laser Ignition [Seite 244]
23.4.3 - 3.3 Effect of the Frequency of Pulsed Microwave on the Minimum Pulse Energy Required for Ignition [Seite 244]
23.5 - 4 Conclusion [Seite 246]
23.6 - References [Seite 246]
24 - Pulse Train Ignition with Passively Q-Switched Laser Spark Plugs Under Engine-like Conditions [Seite 248]
24.1 - Abstract [Seite 248]
24.2 - 1 Introduction [Seite 248]
24.3 - 2 Influence of Laser Pulse Profile on Flame Kernel Formation [Seite 249]
24.4 - 3 Influence of Pulse Trains on Flame Kernel Formation [Seite 250]
24.5 - 4 Ignition and Combustion Process After Pulse Train Ignition [Seite 251]
24.6 - 5 Conclusion [Seite 252]
24.7 - References [Seite 252]
25 - Advanced Plasma Ignition (API): A Simple Corona and Spark Ignition System [Seite 254]
25.1 - 1 Introduction [Seite 254]
25.2 - 2 General Description [Seite 255]
25.2.1 - 2.1 Compatibility [Seite 255]
25.2.2 - 2.2 Safety [Seite 256]
25.3 - 3 Technical Description [Seite 256]
25.3.1 - 3.1 Plasma Plug [Seite 256]
25.3.2 - 3.2 Oscillator [Seite 257]
25.3.3 - 3.3 Current Supply [Seite 257]
25.3.4 - 3.4 High-Voltage Transformer [Seite 258]
25.4 - 4 Conclusion [Seite 258]
25.5 - References [Seite 258]
26 - Alternative Ignition Systems [Seite 259]
27 - Analytical and Experimental Optimization of the Advanced Corona Ignition System [Seite 260]
27.1 - Abstract [Seite 260]
27.2 - 1 Introduction [Seite 260]
27.3 - 2 Energy Audit [Seite 262]
27.3.1 - 2.1 Effect of Operating Frequency [Seite 262]
27.3.2 - 2.2 Analysis of Power Distribution [Seite 265]
27.3.3 - 2.3 Conclusions [Seite 269]
27.4 - 3 Igniter Optimization [Seite 269]
27.4.1 - 3.1 Electrical Design [Seite 270]
27.4.2 - 3.2 Thermal Design [Seite 276]
27.4.3 - 3.3 Conclusions [Seite 278]
27.5 - 4 Combustion Chamber Optimization [Seite 279]
27.5.1 - 4.1 Simplified Treatment in FEA [Seite 279]
27.5.2 - 4.2 Conclusions [Seite 283]
27.6 - 5 Summary [Seite 284]
27.7 - References [Seite 285]
28 - Comparative Optical and Thermodynamic Investigations of High Frequency Corona- and Spark-Ignition on a CV Natural Gas Research Engine Operated with Charge Dilution by Exhaust Gas Recirculation [Seite 286]
28.1 - Abstract [Seite 286]
28.2 - 1 Introduction and Motivation [Seite 286]
28.3 - 2 Basics [Seite 287]
28.3.1 - 2.1 Ignition Systems [Seite 287]
28.3.2 - 2.2 Initial Phase of Combustion [Seite 288]
28.3.3 - 2.3 Exhaust-Gas Recirculation [Seite 289]
28.4 - 3 Experimental Set-up [Seite 290]
28.4.1 - 3.1 Research Engine [Seite 290]
28.4.2 - 3.2 Measurement Instrumentation [Seite 291]
28.4.3 - 3.3 Specifications of the Ignition Systems [Seite 291]
28.5 - 4 Test Procedure [Seite 292]
28.5.1 - 4.1 Operating Points [Seite 292]
28.5.2 - 4.2 Single Cylinder Optical Engine Operating Mode [Seite 293]
28.5.3 - 4.3 Data Analysis [Seite 294]
28.6 - 5 Experimental Results [Seite 295]
28.6.1 - 5.1 Phenomenology of Ignition and Flame Propagation [Seite 295]
28.6.2 - 5.2 Charge Dilution with EGR [Seite 297]
28.6.3 - 5.3 Ignition Energy Variation [Seite 302]
28.7 - 6 Summary [Seite 304]
28.8 - Acknowledgement [Seite 306]
28.9 - References [Seite 306]
29 - Potential of Advanced Corona Ignition System (ACIS) for Future Engine Applications [Seite 308]
29.1 - Abstract [Seite 308]
29.2 - 1 Introduction [Seite 308]
29.3 - 2 Optical Engine Specifications [Seite 309]
29.4 - 3 Operating Conditions and Diagnostics [Seite 311]
29.5 - 4 Optical Engine Results and Discussion [Seite 311]
29.5.1 - 4.1 Stoichiometric Mixture, a/F = 15.0, Same Spark Advance [Seite 311]
29.5.2 - 4.2 Stoichiometric Mixture, Matched CA50 [Seite 313]
29.5.3 - 4.3 Stoichiometric Mixture, 20 % N2 Dilution [Seite 313]
29.5.4 - 4.4 Lean Limit, a/F = 25.8 [Seite 315]
29.5.5 - 4.5 Lean Limit, a/F = 25.2, Similar COVIMEP [Seite 317]
29.5.6 - 4.6 Rich Condition, a/F = 13.1 [Seite 318]
29.6 - 5 Multi-cylinder Engine Specifications [Seite 319]
29.7 - 6 Test Conditions [Seite 319]
29.8 - 7 Multi-cylinder Engine Results [Seite 320]
29.8.1 - 7.1 Part Load Combustion Performance [Seite 320]
29.8.2 - 7.2 Light Load Combustion Performance [Seite 322]
29.9 - 8 Summary [Seite 323]
29.10 - Acknowledgements [Seite 324]
29.11 - References [Seite 324]